Lu Chunhui, Werner Adrian D, Simmons Craig T, Luo Jian
National Centre for Groundwater Research and Training, Flinders University, G.P.O. Box 2100, Adelaide, SA, 5001, Australia.
Ground Water. 2015 Jan-Feb;53(1):164-70. doi: 10.1111/gwat.12172. Epub 2014 Feb 24.
We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((α + 1)/α)hs - B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+α/α. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models.
基于先前界面流的解析解,我们针对包含海岸边界的恒定密度地下水流模型,对海岸水头引入了一种简单的修正方法。结果表明,对于承压含水层,如果将海岸水头修正为((α + 1)/α)hs - B/2α(其中hs是含水层底部以上的平均海平面,B是含水层厚度,α是密度因子),那么通过直接应用达西定律(用于恒定密度流)就可以获得准确的向海排泄量。对于无压含水层,海岸水头应赋值为hs1 + α/α。恒定密度达西解与变密度流数值模拟之间的一致性证明了使用这些修正方法的准确性。评估了采用先前两种方法(即不修正以及使用含水层中间位置的等效淡水水头来表示海岸边界处的水头)所引入的误差。敏感性分析表明,对于典型的海岸含水层参数范围,向海排泄量的误差可能大于100%。观测井相对于趾部的位置是控制估算误差的关键因素,因为它决定了恒定密度流相对于变密度流的相对含水层长度。本研究中引入的海岸水头修正方法有助于根据给定的水头测量值快速准确地估算淡水通量,并能在区域恒定密度地下水流模型中更好地表示海岸边界条件。