Suppr超能文献

一种用于空间色噪声中双基地MIMO雷达的基于张量的子空间方法。

A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.

作者信息

Wang Xianpeng, Wang Wei, Li Xin, Wang Junxiang

机构信息

College of Automation, Harbin Engineering University, No. 145 Nantong Street, Harbin 150001, China.

出版信息

Sensors (Basel). 2014 Feb 25;14(3):3897-907. doi: 10.3390/s140303897.

Abstract

In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

摘要

本文提出了一种基于张量的新子空间方法,用于在存在空间色噪声的情况下估计双基地多输入多输出(MIMO)雷达的出发方向(DOD)和到达方向(DOA)。首先,通过利用匹配滤波器的固有结构,将接收到的信号打包成一个三阶测量张量。然后,将测量张量划分为两个子张量,并构造一个互协方差张量以消除空间色噪声。最后,利用互协方差张量的高阶奇异值分解(HOSVD)构造信号子空间,并通过旋转不变技术(ESPRIT)算法估计信号参数来获得DOD和DOA,它们会自动配对。由于使用了多维固有结构和互协方差张量技术,所提方法比陈的方法、ESPRIT算法和多奇异值分解(multi-SVD)方法具有更好的角度估计性能。仿真结果证实了所提方法的有效性和优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/504e/4003922/a5df06994f46/sensors-14-03897f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验