Div. of Renal Diseases and Hypertension, 12700 E. 19th Ave., C281, Aurora, CO 80045.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F941-51. doi: 10.1152/ajprenal.00532.2013. Epub 2014 Feb 26.
The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes.
肾小球形成选择性滤过屏障,允许水、离子和小溶质进入尿空间,同时限制细胞和大分子的通过。肾小球滤过屏障的三层包括血管内皮细胞、肾小球基底膜 (GBM) 和足细胞上皮。足细胞能够内化白蛋白,并被假设能够清除穿过 GBM 的蛋白质。本研究通过追踪 FITC 标记白蛋白的命运,确定了足细胞内吞白蛋白和处理白蛋白的机制。对永生化人足细胞进行共聚焦成像和全内反射荧光显微镜检查显示,FITC-白蛋白优先在内基底膜处内吞。网格蛋白介导的内吞作用和 caveolae 介导的内吞作用的抑制表明,大多数 FITC-白蛋白通过 caveolae 进入足细胞。一旦内化,FITC-白蛋白与 EEA1 和 LAMP1 (内吞标记物)和新生儿 Fc 受体(转胞吞作用的标志物)共定位。在用 FITC-白蛋白预加载足细胞后,在随后的 60 分钟孵育过程中,大部分加载的 FITC-白蛋白丢失。一部分白蛋白的丢失是通过溶酶体降解发生的,因为溶酶体蛋白酶抑制剂亮肽素预处理部分抑制了 FITC-白蛋白的丢失。与白蛋白的转胞吞作用一致,预加载的足细胞也逐渐将 FITC-白蛋白释放到细胞外培养基中。这些研究证实了足细胞内化白蛋白的能力,并为足细胞中白蛋白处理的细胞机制和命运提供了机制上的见解。