LeBlanc Gabriel, Gizzie Evan, Yang Siyuan, Cliffel David E, Jennings G Kane
Departments of †Chemistry and ‡Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States.
Langmuir. 2014 Sep 23;30(37):10990-1001. doi: 10.1021/la500129q. Epub 2014 Mar 13.
Over the course of a few billion years, nature has developed extraordinary nanomaterials for the efficient conversion of solar energy into chemical energy. One of these materials, photosystem I (PSI), functions as a photodiode capable of generating a charge separation with nearly perfect quantum efficiency. Because of the favorable properties and natural abundance of PSI, researchers around the world have begun to study how this protein complex can be integrated into modern solar energy conversion devices. This feature article describes some of the recent materials and methods that have led to dramatic improvements (over several orders of magnitude) in the photocurrents and photovoltages of biohybrid electrodes based on PSI, with an emphasis on the research activities in our laboratory.
在数十亿年的时间里,大自然已经开发出了非凡的纳米材料,用于将太阳能高效转化为化学能。其中一种材料,光系统I(PSI),其功能类似于一个光电二极管,能够以近乎完美的量子效率产生电荷分离。由于PSI具有良好的特性且天然存在,世界各地的研究人员已开始研究如何将这种蛋白质复合物整合到现代太阳能转换装置中。这篇专题文章描述了一些最近的材料和方法,这些材料和方法使基于PSI的生物杂交电极的光电流和光电压得到了显著提高(提高了几个数量级),并重点介绍了我们实验室的研究活动。