Dionyssiou M G, Ehyai S, Avrutin E, Connor M K, McDermott J C
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
Department of Kinesiology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
Cell Death Dis. 2014 Feb 27;5(2):e1094. doi: 10.1038/cddis.2014.58.
MYOGENIN is a member of the muscle regulatory factor family that orchestrates an obligatory step in myogenesis, the terminal differentiation of skeletal muscle cells. A paradoxical feature of alveolar rhabdomyosarcoma (ARMS), a prevalent soft tissue sarcoma in children arising from cells with a myogenic phenotype, is the inability of these cells to undergo terminal differentiation despite the expression of MYOGENIN. The chimeric PAX3-FOXO1 fusion protein which results from a chromosomal translocation in ARMS has been implicated in blocking cell cycle arrest, preventing myogenesis from occurring. We report here that PAX3-FOXO1 enhances glycogen synthase kinase 3β (GSK3β) activity which in turn represses MYOGENIN activity. MYOGENIN is a GSK3β substrate in vitro on the basis of in vitro kinase assays and MYOGENIN is phosphorylated in ARMS-derived RH30 cells. Constitutively active GSK3β(S9A) increased the level of a phosphorylated form of MYOGENIN on the basis of western blot analysis and this effect was reversed by neutralization of the single consensus GSK3β phosphoacceptor site by mutation (S160/164A). Congruently, GSK3β inhibited the trans-activation of an E-box reporter gene by wild-type MYOGENIN, but not MYOGENIN with the S160/164A mutations. Functionally, GSK3β repressed muscle creatine kinase (MCK) promoter activity, an effect which was reversed by the S160/164A mutated MYOGENIN. Importantly, GSK3β inhibition or exogenous expression of the S160/164A mutated MYOGENIN in ARMS reduced the anchorage independent growth of RH30 cells in colony-formation assays. Thus, sustained GSK3β activity represses a critical regulatory step in the myogenic cascade, contributing to the undifferentiated, proliferative phenotype in alveolar rhabdomyosarcoma (ARMS).
肌生成素是肌肉调节因子家族的成员之一,在肌生成过程中发挥着关键作用,而肌生成是骨骼肌细胞的终末分化过程。肺泡横纹肌肉瘤(ARMS)是一种常见于儿童的软组织肉瘤,起源于具有肌源性表型的细胞,其一个矛盾的特征是,尽管这些细胞表达了肌生成素,但却无法进行终末分化。ARMS中由于染色体易位产生的嵌合型PAX3-FOXO1融合蛋白,被认为与阻断细胞周期停滞、阻止肌生成的发生有关。我们在此报告,PAX3-FOXO1增强了糖原合酶激酶3β(GSK3β)的活性,进而抑制了肌生成素的活性。基于体外激酶分析,肌生成素在体外是GSK3β的底物,并且在源自ARMS的RH30细胞中,肌生成素会发生磷酸化。基于蛋白质印迹分析,组成型活性GSK3β(S9A)增加了肌生成素磷酸化形式的水平,而通过突变(S160/164A)中和单个共有GSK3β磷酸化位点可逆转这种效应。同样,GSK3β抑制了野生型肌生成素对E-box报告基因的反式激活,但对具有S160/164A突变的肌生成素没有抑制作用。在功能上,GSK3β抑制了肌肉肌酸激酶(MCK)启动子活性,而S160/164A突变的肌生成素可逆转这种效应。重要的是,在ARMS中抑制GSK3β或外源性表达S160/164A突变的肌生成素,在集落形成试验中降低了RH30细胞的非锚定依赖性生长。因此,持续的GSK3β活性抑制了肌生成级联反应中的关键调节步骤,导致肺泡横纹肌肉瘤(ARMS)出现未分化的增殖表型。