Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan.
Phys Rev Lett. 2014 Feb 21;112(7):076802. doi: 10.1103/PhysRevLett.112.076802. Epub 2014 Feb 20.
We study the manipulation of the spin polarization of photoemitted electrons in Bi2Se3 by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the photoelectron spin-polarization. We demonstrate the ± 100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal yet fully generalized two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture.
我们通过自旋和角度分辨光发射谱研究了 Bi2Se3 中光发射电子的自旋极化的操纵。建立了控制光电子自旋极化的一般规则。我们证明了在旋转光偏振时,测量的自旋极化矢量的单个分量可以反转±100%,并且通过改变实验配置和光子能量可以进行全三维操纵。虽然需要进行特定于材料的密度泛函理论分析才能进行定量描述,但最小但完全通用的双层原子模型根据光学选择定则、光电子干涉和拓扑表面态复杂结构的相互作用,定性地说明了自旋响应。因此,在具有层依赖性和纠缠的自旋轨道织构的系统中,通常可以实现光电子自旋极化控制。