Nano Science and Technology Program, Department of Chemistry, and ‡Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong.
ACS Nano. 2014 Apr 22;8(4):3771-80. doi: 10.1021/nn500465w. Epub 2014 Mar 6.
Planar substrate supported semiconductor quantum well (QW) structures are not amenable to manipulation in miniature devices, while free-standing QW nanostructures, e.g., ultrathin nanosheets and nanoribbons, suffer from mechanical and environmental instability. Therefore, it is tempting to fashion high-quality QW structures on anisotropic and mechanically robust supporting nanostructures such as nanowires and nanoplates. Herein, we report a solution quasi-heteroepitaxial route for growing a barrier-confined quasi-QW structure (ZnSe/CdSe/ZnSe) on the supporting arms of ZnO nanotetrapods, which have a 1D nanowire structure, through the combination of ion exchange and successive deposition assembly. This resulted in highly crystalline and highly oriented quasi-QWs along the whole axial direction of the arms of the nanotetrapod because a transition buffer layer (Zn(x)Cd(1-x)Se) was formed and in turn reduced the lattice mismatch and surface defects. Significantly, such a barrier-confined QW emits excitonic light ∼17 times stronger than the heterojunction (HJ)-type structure (ZnSe/CdSe, HJ) at the single-particle level. Time-resolved photoluminescence from ensemble QWs exhibits a lifetime of 10 ns, contrasting sharply with ∼300 ps for the control HJ sample. Single-particle PL and Raman spectra suggest that the barrier layer of QW has completely removed the surface trap states on the HJ and restored or upgraded the photoelectric properties of the semiconductor layer. Therefore, this deliberate heteroepitaxial growth protocol on the supporting nanotetrapod has realized a several micrometer long QW structure with high mechanical robustness and high photoelectric quality. We envision that such QWs integrated on 1D nanostructures will largely improve the performance of solar cells and bioprobes, among others.
平面衬底支撑的半导体量子阱(QW)结构不适合在微型设备中进行操作,而独立的 QW 纳米结构,例如超薄纳米片和纳米带,存在机械和环境不稳定性的问题。因此,在各向异性和机械坚固的支撑纳米结构(例如纳米线和纳米板)上构建高质量的 QW 结构是很有吸引力的。在这里,我们报告了一种在 ZnO 纳米四足体支撑臂上通过离子交换和连续沉积组装生长具有势垒限制的准量子阱结构(ZnSe/CdSe/ZnSe)的溶液准异质外延途径。这导致了高度结晶和高度取向的准-QW 沿着纳米四足体支撑臂的整个轴向,因为形成了过渡缓冲层(Zn(x)Cd(1-x)Se),从而降低了晶格失配和表面缺陷。重要的是,这种势垒限制的 QW 在单粒子水平上比异质结(HJ)结构(ZnSe/CdSe,HJ)发射的激子光强约强 17 倍。集量子阱的时间分辨光致发光显示出 10 ns 的寿命,与对照 HJ 样品的约 300 ps 形成鲜明对比。单粒子 PL 和拉曼光谱表明,QW 的势垒层完全去除了 HJ 上的表面陷阱态,并恢复或升级了半导体层的光电性能。因此,这种在支撑纳米四足体上的有意异质外延生长方案实现了具有高机械强度和高质量光电性能的几微米长的 QW 结构。我们设想,这种集成在 1D 纳米结构上的 QW 将大大提高太阳能电池和生物探针等的性能。