Budini Adrián A
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, Avenida E. Bustillo Km 9.5, (8400) Bariloche, Argentina and Universidad Tecnológica Nacional (UTN-FRBA), Fanny Newbery 111, (8400) Bariloche, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012147. doi: 10.1103/PhysRevE.89.012147. Epub 2014 Jan 31.
In this paper we demonstrate that two commonly used phenomenological post-Markovian quantum master equations can be derived without using any perturbative approximation. A system coupled to an environment characterized by self-classical configurational fluctuations, the latter obeying a Markovian dynamics, defines the underlying physical model. Both Shabani-Lidar equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and its associated approximated integrodifferential kernel master equation are obtained by tracing out two different bipartite Markovian Lindblad dynamics where the environment fluctuations are taken into account by an ancilla system. Furthermore, conditions under which the non-Markovian system dynamics can be unraveled in terms of an ensemble of measurement trajectories are found. In addition, a non-Markovian quantum jump approach is formulated. Contrary to recent analysis [L. Mazzola, E. M. Laine, H. P. Breuer, S. Maniscalco, and J. Piilo, Phys. Rev. A 81, 062120 (2010)], we also demonstrate that these master equations, even with exponential memory functions, may lead to non-Markovian effects such as an environment-to-system backflow of information if the Hamiltonian system does not commutate with the dissipative dynamics.
在本文中,我们证明了两个常用的唯象后马尔可夫量子主方程无需使用任何微扰近似即可导出。一个与以自经典构型涨落为特征的环境耦合的系统,后者服从马尔可夫动力学,定义了基础物理模型。通过对两种不同的二分马尔可夫林德布拉德动力学进行求迹得到了沙巴尼 - 利达尔方程[A. 沙巴尼和D. A. 利达尔,《物理评论A》71, 020101(R) (2005)]及其相关的近似积分微分核主方程,其中环境涨落由一个辅助系统考虑。此外,还找到了非马尔可夫系统动力学可以根据一组测量轨迹来展开的条件。另外,还制定了一种非马尔可夫量子跳跃方法。与最近的分析[L. 马佐拉、E. M. 莱恩、H. P. 布勒尔、S. 马尼斯科和J. 皮伊洛,《物理评论A》81, 062120 (2010)]相反,我们还证明了这些主方程,即使具有指数记忆函数,如果哈密顿系统与耗散动力学不对易,也可能导致非马尔可夫效应,如信息从环境到系统的回流。