Suppr超能文献

低多分散性葡萄糖聚合物作为腹膜透析的渗透剂

Low-Polydispersity Glucose Polymers as Osmotic Agents for Peritoneal Dialysis.

作者信息

Leypoldt John K, Hoff Catherine M, Akonur Alp, Holmes Clifford J

机构信息

Medical Products (Renal), Baxter Healthcare Corporation, Deerfield, Illinois, USA

Medical Products (Renal), Baxter Healthcare Corporation, Deerfield, Illinois, USA.

出版信息

Perit Dial Int. 2015 Jul-Aug;35(4):428-35. doi: 10.3747/pdi.2013.00232. Epub 2014 Mar 1.

Abstract

UNLABELLED

BACKGROUND

Peritoneal dialysis (PD) solutions containing icodextrin as the osmotic agent have advantages during long dwells. The glucose polymers that constitute icodextrin are a heterogeneous mix of molecules with a polydispersity [ratio of weight-average to number-average molecular weight (Mw/Mn)] of approximately 2.6. The present study evaluates whether modifications in the polydispersity and concentration of glucose polymers can improve ultrafiltration (UF) without an associated increase in carbohydrate absorption (CA). ♦

METHODS

Computer simulations using a three-pore model of peritoneal transport during a long dwell in PD patients predict that, in general, compared with 7.5% icodextrin, glucose polymers with a Mw greater than or equal to 7.5 kDa, a polydispersity less than 2.6, and concentrations greater than 7% could achieve higher UF without higher CA. Based on the simulations, we hypothesized that, compared with 7.5% icodextrin, glucose polymers with a Mw of 18 - 19 kDa and a polydispersity of 2.0 at 11% concentration could achieve higher UF without a higher CA. We tested this hypothesis in experimental studies using 8-hour dwells in New Zealand White rabbits. In those studies, UF was measured by complete fluid collection, and CA was measured by subtracting the total carbohydrate in the collected fluid from the carbohydrate initially infused. ♦

RESULTS

The UF was higher with 11% 19 kDa glucose polymer than with 7.5% icodextrin (mean ± standard deviation: 89 ± 31 mL vs 49 ± 15 mL; p = 0.004) without higher CA (5.2 ± 0.9 g vs 5.0 ± 0.9 g, p = 0.7). Similar results were seen with the 11% 18 kDa glucose polymer, which, compared with 7.5% icodextrin, resulted in higher UF (mean ± standard deviation: 96 ± 18 mL vs 66 ± 17 mL; p < 0.001) without higher CA (4.8 ± 0.7 g vs 5.2 ± 0.6 g, p = 0.2). ♦

CONCLUSIONS

The findings demonstrate that, compared with 7.5% icodextrin solution, long-dwell PD solutions containing 11% glucose polymers with a Mw of 18-19 kDa and a polydispersity of 2.0 can provide higher UF without higher CA.

摘要

未标注

背景

含有艾考糊精作为渗透剂的腹膜透析(PD)溶液在长时间留腹期间具有优势。构成艾考糊精的葡萄糖聚合物是分子的异质混合物,其多分散性[重均分子量与数均分子量之比(Mw/Mn)]约为2.6。本研究评估葡萄糖聚合物多分散性和浓度的改变是否能在不增加碳水化合物吸收(CA)的情况下改善超滤(UF)。♦

方法

使用PD患者长时间留腹期间腹膜转运的三孔模型进行计算机模拟预测,一般而言,与7.5%艾考糊精相比,Mw大于或等于7.5 kDa、多分散性小于2.6且浓度大于7%的葡萄糖聚合物可在不增加CA的情况下实现更高的UF。基于模拟,我们假设,与7.5%艾考糊精相比,浓度为11%、Mw为18 - 19 kDa且多分散性为2.0的葡萄糖聚合物可在不增加CA的情况下实现更高的UF。我们在新西兰白兔8小时留腹的实验研究中检验了这一假设。在这些研究中,通过完全收集液体来测量UF,通过从最初注入的碳水化合物中减去收集液体中的总碳水化合物来测量CA。♦

结果

11% 19 kDa葡萄糖聚合物的UF高于7.5%艾考糊精(均值±标准差:89±31 mL对49±15 mL;p = 0.004),且CA未增加(5.2±0.9 g对5.0±0.9 g,p = 0.7)。11% 18 kDa葡萄糖聚合物也有类似结果,与7.5%艾考糊精相比,其UF更高(均值±标准差:96±18 mL对66±17 mL;p < 0.001),且CA未增加(4.8±0.7 g对5.2±0.6 g,p = 0.2)。♦

结论

研究结果表明,与7.5%艾考糊精溶液相比,含有11%、Mw为18 - 至19 kDa且多分散性为2.0的葡萄糖聚合物的长时间留腹PD溶液可在不增加CA的情况下提供更高的UF。

相似文献

1
Low-Polydispersity Glucose Polymers as Osmotic Agents for Peritoneal Dialysis.
Perit Dial Int. 2015 Jul-Aug;35(4):428-35. doi: 10.3747/pdi.2013.00232. Epub 2014 Mar 1.
2
Ultrafiltration characteristics of glucose polymers with low polydispersity.
Perit Dial Int. 2013 Mar-Apr;33(2):124-31. doi: 10.3747/pdi.2012.00009. Epub 2012 Nov 1.
5
Three-pore model predictions of 24-hour automated peritoneal dialysis therapy using bimodal solutions.
Perit Dial Int. 2011 Sep-Oct;31(5):537-44. doi: 10.3747/pdi.2010.00169. Epub 2011 May 31.
6
Icodextrin: a review of its use in peritoneal dialysis.
Drugs. 2003;63(19):2079-105. doi: 10.2165/00003495-200363190-00011.
7
Predicting the Peritoneal Absorption of Icodextrin in Rats and Humans Including the Effect of α-Amylase Activity in Dialysate.
Perit Dial Int. 2015 May-Jun;35(3):288-96. doi: 10.3747/pdi.2012.00247. Epub 2014 Mar 1.
9
Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD.
Kidney Int. 2000 Jun;57(6):2546-56. doi: 10.1046/j.1523-1755.2000.00114.x.
10
Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration.
J Am Soc Nephrol. 2005 Feb;16(2):546-54. doi: 10.1681/ASN.2004090793. Epub 2004 Dec 29.

引用本文的文献

1
Modelling of icodextrin hydrolysis and kinetics during peritoneal dialysis.
Sci Rep. 2023 Apr 21;13(1):6526. doi: 10.1038/s41598-023-33480-w.
3
The osmo-metabolic approach: a novel and tantalizing glucose-sparing strategy in peritoneal dialysis.
J Nephrol. 2021 Apr;34(2):503-519. doi: 10.1007/s40620-020-00804-2. Epub 2020 Aug 7.

本文引用的文献

1
Peritoneal residual volume induces variability of ultrafiltration with icodextrin.
Perit Dial Int. 2014 Jan-Feb;34(1):95-9. doi: 10.3747/pdi.2012.00175. Epub 2013 Oct 31.
2
Impact of icodextrin on clinical outcomes in peritoneal dialysis: a systematic review of randomized controlled trials.
Nephrol Dial Transplant. 2013 Jul;28(7):1899-907. doi: 10.1093/ndt/gft050. Epub 2013 Mar 13.
3
Ultrafiltration characteristics of glucose polymers with low polydispersity.
Perit Dial Int. 2013 Mar-Apr;33(2):124-31. doi: 10.3747/pdi.2012.00009. Epub 2012 Nov 1.
4
Reducing cardiometabolic risk in peritoneal dialysis patients: role of the dialysis solution.
J Diabetes Sci Technol. 2009 Nov 1;3(6):1472-80. doi: 10.1177/193229680900300629.
5
Icodextrin: fifteen years and counting. Introduction.
Perit Dial Int. 2009 Jul-Aug;29(4):367-9.
7
Icodextrin metabolites in peritoneal dialysis.
Perit Dial Int. 2009 Jul-Aug;29(4):370-6.
8
How to assess transport in animals?
Perit Dial Int. 2009 Feb;29 Suppl 2:S32-5.
9
Definition of metabolic syndrome in peritoneal dialysis.
Perit Dial Int. 2009 Feb;29 Suppl 2:S137-44.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验