Suppr超能文献

使用固定容限值的样本熵,心脏振动干扰下膈肌肌电信号对呼吸肌努力程度的估计得到改善。

Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values.

机构信息

Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain ; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain ; Department ESAII, Universitat Politècnica de Catalunya, Barcelona, Spain.

Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain ; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain ; Department of Pneumology, Germans Trias i Pujol Hospital, CIBERES, Badalona, Spain.

出版信息

PLoS One. 2014 Feb 19;9(2):e88902. doi: 10.1371/journal.pone.0088902. eCollection 2014.

Abstract

The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi) signal is a non-invasive technique to assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However, these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG) noise. In this study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values (fSampEn), that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed. The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of respiratory muscle effort from MMGdi signals with the presence of MCG interference.

摘要

膈肌肌电(MMGdi)信号幅度参数分析是一种评估呼吸肌用力的非侵入性技术,可用于检测和量化呼吸肌无力的严重程度。MMGdi 信号的幅度通常使用平均整流值或信号的均方根来评估。然而,这些估计值受到心脏振动或心机械图(MCG)噪声的显著影响。在这项研究中,我们提出了一种改进 MMGdi 信号中呼吸肌用力估计的方法,该方法对 MCG 的存在具有鲁棒性。该方法基于使用固定容限值(fSampEn)计算样本熵,即容限值不受分析窗口局部标准差归一化的影响。在具有不同 MCG 与清洁肌电组件幅度比的合成肌电信号中测试了 fSampEn 参数的行为。作为该技术应用的一个例子,还在具有不同吸气负荷的记录的 MMGdi 信号中探索了 fSampEn 的使用。来自合成和记录信号的结果表明,熵参数受 MCG 噪声的影响较小,尤其是在低信噪比下。因此,我们认为所提出的 fSampEn 参数可以改进存在 MCG 干扰时从 MMGdi 信号中估计呼吸肌用力的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe40/3929606/2229ba685914/pone.0088902.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验