Theil Frank, Dellith Andrea, Dellith Jan, Undisz Andreas, Csáki Andrea, Fritzsche Wolfgang, Popp Jürgen, Rettenmayr Markus, Dietzek Benjamin
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena, Germany; Leibniz Institute of Photonic Technology (IPHT) Jena e.V., Albert-Einstein-Str. 9, Jena, Germany.
Leibniz Institute of Photonic Technology (IPHT) Jena e.V., Albert-Einstein-Str. 9, Jena, Germany.
J Colloid Interface Sci. 2014 May 1;421:114-21. doi: 10.1016/j.jcis.2014.01.029. Epub 2014 Jan 31.
The most commonly used material in photocatalysis is TiO2. Since TiO2 absorbs only UV-light, photosensitizers are used to extend these catalysts' absorption properties into the Vis/NIR spectral range. In this work we merge the commonly used approach of dye sensitization with the only recently developed approach of functionalizing the catalyst with plasmonically active metal nanoparticles in order to achieve synergistic effects between these two types of visible light sensitization. To this end SiO2@TiO2 nanostructures are functionalized with gold nanoparticles or a combination of gold/platinum nanoparticles loaded with Ru dyes and thoroughly characterized by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) imaging as well as energy dispersive X-ray spectroscopy (EDX), UV/VIS and surface enhanced resonance Raman scattering (SERRS) spectroscopy. The photocatalytic performance is tested by applying the benchmark experiment of methylene blue degradation. Spectroscopic investigations and electron microscopy proof the successful synthesis of the envisioned structure. The photocatalytic activity of the nanostructures shows up to 52% higher first order rate constants compared to the corresponding nanostructures without further dye functionalization.
光催化中最常用的材料是二氧化钛。由于二氧化钛仅吸收紫外光,因此使用光敏剂将这些催化剂的吸收特性扩展到可见/近红外光谱范围。在这项工作中,我们将常用的染料敏化方法与最近才开发的用等离子体活性金属纳米粒子对催化剂进行功能化的方法相结合,以实现这两种类型的可见光敏化之间的协同效应。为此,用金纳米粒子或负载钌染料的金/铂纳米粒子组合对SiO2@TiO2纳米结构进行功能化,并通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)成像以及能量色散X射线光谱(EDX)、紫外/可见光谱和表面增强共振拉曼散射(SERRS)光谱进行全面表征。通过应用亚甲基蓝降解的基准实验来测试光催化性能。光谱研究和电子显微镜证明了所设想结构的成功合成。与没有进一步染料功能化的相应纳米结构相比,这些纳米结构的光催化活性显示出高达52%的一级速率常数。