Suppr超能文献

结合二级结构和蛋白质溶剂可及性预测进行甲硫氨酸取代以用于反常散射。

Combining secondary-structure and protein solvent-accessibility predictions in methionine substitution for anomalous dispersion.

作者信息

Wu Hsin-Yi, Cheng Yi-Sheng

机构信息

Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Acta Crystallogr F Struct Biol Commun. 2014 Mar;70(Pt 3):378-83. doi: 10.1107/S2053230X14001897. Epub 2014 Feb 19.

Abstract

In X-ray crystallographic analysis, the single-wavelength and multi-wavelength anomalous diffraction (SAD and MAD) methods have been widely used in order to solve the phase problem. Selenium-labelled methionine has been shown to be very effective for anomalous dispersion phasing, and at least one selenomethionine is required for every 100 amino acids. Some proteins, such as the Arabidopsis thaliana thylakoid lumen protein AtTLP18.3, can be overexpressed in an Escherichia coli system and high-quality protein crystals can be obtained. However, AtTLP18.3 contains no methionine residues, and site-directed mutagenesis was required in order to introduce methionine residues into the protein. A criterion for the mutated residues is that they should avoid affecting the structure and function. In this study, several leucine and isoleucine residues were selected for methionine substitution by combining secondary-structure and solvent-accessibility predictions. From the secondary-structure prediction, mutated residues were first determined in the coil or loop regions at the junction of two secondary structures. Since leucine and isoleucine residues are hydrophobic and are normally buried within the protein core, these residues should have a higher solvent-accessibility prediction so that they would be partially buried or exposed in the protein. In addition, five residues (Leu107, Leu202, Ile133, Leu128 and Ile159) of AtTLP18.3 were mutated to methionine residues. After overexpression and purification, only two single-mutant lines, L128M and I159M, could be crystallized. Finally, a double-mutation line of truncated AtTLP18.3 with L128M and I159M mutations was constructed. The structure of the double mutant AtTLP18.3 protein was resolved using the single-wavelength anomalous diffraction method at 2.6 Å resolution. The results indicated that a combination of secondary-structure and solvent-accessibility prediction for methionine substitution is a useful method in SAD and MAD phasing.

摘要

在X射线晶体学分析中,单波长和多波长反常衍射(SAD和MAD)方法已被广泛用于解决相位问题。硒标记的甲硫氨酸已被证明对反常色散定相非常有效,每100个氨基酸至少需要一个甲硫氨酸。一些蛋白质,如拟南芥类囊体腔蛋白AtTLP18.3,可以在大肠杆菌系统中过表达并获得高质量的蛋白质晶体。然而,AtTLP18.3不含甲硫氨酸残基,因此需要进行定点诱变以便将甲硫氨酸残基引入该蛋白质中。突变残基的一个标准是它们应避免影响结构和功能。在本研究中,通过结合二级结构和溶剂可及性预测,选择了几个亮氨酸和异亮氨酸残基进行甲硫氨酸取代。根据二级结构预测,首先在两个二级结构交界处的卷曲或环区域确定突变残基。由于亮氨酸和异亮氨酸残基是疏水的,通常埋藏在蛋白质核心内,这些残基应该具有较高的溶剂可及性预测值,以便它们在蛋白质中部分埋藏或暴露。此外,将AtTLP18.3的五个残基(Leu107、Leu202、Ile133、Leu128和Ile159)突变为甲硫氨酸残基。经过过表达和纯化后,只有两个单突变株系L128M和I159M能够结晶。最后,构建了具有L128M和I159M突变的截短AtTLP18.3双突变株系。使用单波长反常衍射方法在2.6 Å分辨率下解析了双突变AtTLP18.3蛋白的结构。结果表明,结合二级结构和溶剂可及性预测进行甲硫氨酸取代是SAD和MAD定相中的一种有用方法。

相似文献

1
Combining secondary-structure and protein solvent-accessibility predictions in methionine substitution for anomalous dispersion.
Acta Crystallogr F Struct Biol Commun. 2014 Mar;70(Pt 3):378-83. doi: 10.1107/S2053230X14001897. Epub 2014 Feb 19.
2
Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen.
Plant Physiol. 2011 Nov;157(3):1015-25. doi: 10.1104/pp.111.184739. Epub 2011 Sep 9.
3
Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD.
Acta Crystallogr D Struct Biol. 2016 Nov 1;72(Pt 11):1174-1180. doi: 10.1107/S2059798316015850. Epub 2016 Oct 28.
5
MAD on threonine synthase: the phasing power of oxidized selenomethionine.
Acta Crystallogr D Biol Crystallogr. 2001 Sep;57(Pt 9):1337-40. doi: 10.1107/s0907444901008666. Epub 2001 Aug 23.
7
Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 A resolution.
Structure. 2000 Nov 15;8(11):1167-78. doi: 10.1016/s0969-2126(00)00526-8.
8
Crystallization of the C-terminal domain of the fibre protein from snake adenovirus 1, an atadenovirus.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Dec;69(Pt 12):1374-9. doi: 10.1107/S1744309113029308. Epub 2013 Nov 29.
9
Single-wavelength anomalous diffraction phasing revisited.
Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1413-20. doi: 10.1107/s0907444900010039.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen.
Plant Physiol. 2011 Nov;157(3):1015-25. doi: 10.1104/pp.111.184739. Epub 2011 Sep 9.
3
Pre-calculated protein structure alignments at the RCSB PDB website.
Bioinformatics. 2010 Dec 1;26(23):2983-5. doi: 10.1093/bioinformatics/btq572. Epub 2010 Oct 10.
4
Auxiliary proteins involved in the assembly and sustenance of photosystem II.
Photosynth Res. 2008 Oct-Dec;98(1-3):489-501. doi: 10.1007/s11120-008-9320-3. Epub 2008 Jul 10.
5
TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle.
Biochem J. 2007 Sep 15;406(3):415-25. doi: 10.1042/BJ20070460.
6
Predicting the solvent accessibility of transmembrane residues from protein sequence.
J Proteome Res. 2006 May;5(5):1063-70. doi: 10.1021/pr050397b.
7
Tolerance of point substitution of methionine for isoleucine in hen egg white lysozyme.
Protein Eng. 2001 Jun;14(6):421-5. doi: 10.1093/protein/14.6.421.
8
The PSIPRED protein structure prediction server.
Bioinformatics. 2000 Apr;16(4):404-5. doi: 10.1093/bioinformatics/16.4.404.
10
Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction.
Gene. 1994 Dec 30;151(1-2):119-23. doi: 10.1016/0378-1119(94)90641-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验