Licona-Cassani Cuauhtemoc, Lim Sooa, Marcellin Esteban, Nielsen Lars K
§Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
Mol Cell Proteomics. 2014 May;13(5):1219-30. doi: 10.1074/mcp.M113.033951. Epub 2014 Mar 10.
Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest ("metabolic switch") preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO(2) enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of actinomycetes.
在气生菌丝分化和次级代谢产物生物合成开始之前的短暂生长停滞期(“代谢转换”),放线菌会经历代谢和细胞机制的剧烈重组。本研究探讨了磷酸化在工业放线菌糖多孢红霉菌中协调代谢转换的作用。使用开放型二维液相色谱 - 质谱蛋白质组学和二氧化钛富集技术,在150小时的发酵过程中总共检测到来自88种蛋白质的109个磷酸化肽段。对于20对同时显示总蛋白表达恒定的磷酸化肽段及其未磷酸化的同源物,可以进行定量分析。参与中心碳代谢的酶,如假定的乙酰辅酶A羧化酶、异柠檬酸裂解酶和2 - 氧代戊二酸脱氢酶,在稳定期的磷酸化程度发生了显著变化,这表明为了底物的再利用和聚酮化合物前体的产生而进行了代谢重排。此外,一种参与细胞对环境应激反应的酶,胰蛋白酶样丝氨酸蛋白酶(SACE_6340/NC_009142_6216),在生长停滞阶段的磷酸化水平降低。更重要的是,与蛋白质合成调控相关的酶在这个阶段经历了快速的磷酸化变化。在代谢转换期间,核糖核酸酶Rne/Rng(SACE_1406/NC_009142_1388)的磷酸化程度增加,而两种核糖体蛋白S6(SACE_7351/NC_009142_7233)和S32(SACE_6101/NC_009142_5981)在发酵的这个阶段磷酸化程度显著降低,这支持了核糖体亚群在代谢转换前后差异调节翻译的假说。总体而言,我们展示了磷酸化蛋白质组学研究在解释微生物生理学方面的巨大潜力,并特别提供了放线菌整个发育周期中动态蛋白质磷酸化事件的证据。