Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences , Block JD, Sector III, Salt Lake, Kolkata 700 098, India.
ACS Appl Mater Interfaces. 2014 Apr 9;6(7):4903-10. doi: 10.1021/am405950q. Epub 2014 Mar 24.
The MnFe2O4 nanoparticle has been among the most frequently chosen systems due to its diverse applications in the fields ranging from medical diagnostics to magnetic hyperthermia and site-specific drug delivery. Although numerous efforts have been directed in the synthesis of monodisperse MnFe2O4 nanocrystals, unfortunately, however, studies regarding the tuning of surface property of the synthesized nanocrystals through functionalization are sparse in the existing literature. Herein, we demonstrate the emergence of intrinsic multicolor fluorescence in MnFe2O4 nanoparticles from blue, cyan, and green to red, upon functionalization and further surface modification with a small organic ligand, Na-tartrate. Moreover, we have found an unprecedented photocatalytic property of the functionalized MnFe2O4 nanoparticles in the degradation of a model water contaminant. Detailed characterization through XRD, TEM, and FTIR confirms the very small size and functionalization of MnFe2O4 nanoparticles with a biocompatible ligand. Proper investigation through UV-visible absorption, steady-state and time-resolved photoluminescence study reveals that ligand-to-metal charge-transfer transition from the tartrate ligand to the lowest unoccupied energy level of Mn(2+/3+)or Fe(3+) of the NPs and Jahn-Teller distorted d-d transitions centered over Mn(3+) ions in the NPs play the key role behind the generation of multiple fluorescence from the ligand-functionalized MnFe2O4 nanoparticles. VSM measurements indicates that the superparamagnetic nature of MnFe2O4 nanoparticles remains unchanged even after surface modification. We believe that the developed superparamagnetic, multicolor fluorescent MnFe2O4 nanopaticles would open up new opportunities as well as enhance their beneficial activities toward diverse applications.
由于 MnFe2O4 纳米颗粒在从医学诊断到磁热疗和靶向药物输送等领域的广泛应用,它已成为最常被选择的系统之一。尽管已经做出了许多努力来合成单分散的 MnFe2O4 纳米晶体,然而,关于通过功能化来调整合成纳米晶体表面性质的研究在现有文献中却很少。在这里,我们展示了通过功能化和进一步用小分子配体 Na-酒石酸盐进行表面修饰,MnFe2O4 纳米颗粒从蓝色、青色和绿色转变为红色的固有多色荧光的出现。此外,我们还发现功能化的 MnFe2O4 纳米颗粒在降解模型水污染物方面具有前所未有的光催化性能。通过 XRD、TEM 和 FTIR 的详细表征证实了 MnFe2O4 纳米颗粒的非常小尺寸和功能化,且具有生物相容性配体。通过紫外-可见吸收、稳态和时间分辨光致发光研究的适当研究表明,配体到金属的电荷转移从酒石酸盐配体到 NPs 的最低未占据能级的 Mn(2+/3+)或 Fe(3+)以及 NPs 中 Mn(3+)离子的 Jahn-Teller 畸变 d-d 跃迁在配体功能化的 MnFe2O4 纳米颗粒产生多色荧光中起着关键作用。VSM 测量表明,即使在表面修饰后,MnFe2O4 纳米颗粒的超顺磁性仍然保持不变。我们相信,开发的超顺磁性、多色荧光 MnFe2O4 纳米颗粒将为各种应用开辟新的机会,并增强它们的有益活性。