Suppr超能文献

网络分析揭示炎症因子在肾移植患者不同表型中的作用。

Network analysis reveals roles of inflammatory factors in different phenotypes of kidney transplant patients.

作者信息

Wu Duojiao, Liu Xiaoping, Liu Chen, Liu Zhiping, Xu Ming, Rong Ruiming, Qian Mengjia, Chen Luonan, Zhu Tongyu

机构信息

Qingpu Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.

Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

J Theor Biol. 2014 Dec 7;362:62-8. doi: 10.1016/j.jtbi.2014.03.006. Epub 2014 Mar 13.

Abstract

BACKGROUND

Systems-level characterization of inflammation in kidney transplantation remains incomplete. By stratifying kidney transplant patients based on phenotypes, the present study sought to identify the role of inflammatory proteins in disease progress and assess potential biomarkers for allograft monitoring.

METHODS

Kidney transplant patients with different allograft status were enrolled in the study: stable renal function (ST), impaired renal function (UNST), acute rejection (AR), and chronic rejection (CR). We stratified the patients into 3 phenotype levels according to their symptoms and pathogenesis. Serum protein concentrations were measured by a quantitative protein array. All differentially expressed proteins were analyzed by protein-protein interaction networks (PPINs) to highlight protein interactions in patients with the above dysfunction levels. We identified level-related proteins and evaluated the classification efficiency of these biomarkers based on leave-one-out validation. The candidate proteins related to phenotype transforming were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.

RESULTS

Based on the hypothesis that common proteins and their up- or down-regulation promote disease progress, we obtained 12 common proteins and 11 level-specific proteins from the phenotype-related PPINs. The common proteins were annotated for KEGG enrichment: (1) cytokine-cytokine receptor interaction; (2) hematopoietic cell lineage; (3) Jak-STAT signaling pathway; (4) allograft rejection; and (5) T cell receptor signaling pathway. The level-specific proteins could be potential biomarkers with diagnostic value. The classification potency of the 11 level-specific proteins (IL-1R-1, IL-16, TIMP-1, G-CSF, MIG, IL-11, BLC, TNF-β, Eotaxin-2, I-309 and IL-6 sR) was better than the performance using all 40 proteins.

CONCLUSION

The study demonstrated the potential value of PPINs-based approach to understanding inflammation-derived mechanisms and developing diagnostic biomarkers. Independent evaluations are required to further estimate the clinical relevance of the new diagnostic biomarkers.

摘要

背景

肾移植中炎症的系统水平特征仍不完整。本研究通过根据表型对肾移植患者进行分层,旨在确定炎症蛋白在疾病进展中的作用,并评估用于同种异体移植监测的潜在生物标志物。

方法

纳入具有不同同种异体移植状态的肾移植患者:肾功能稳定(ST)、肾功能受损(UNST)、急性排斥反应(AR)和慢性排斥反应(CR)。我们根据患者的症状和发病机制将其分为3个表型水平。通过定量蛋白质阵列测量血清蛋白浓度。通过蛋白质-蛋白质相互作用网络(PPINs)分析所有差异表达的蛋白质,以突出上述功能障碍水平患者中的蛋白质相互作用。我们鉴定了与水平相关的蛋白质,并基于留一法验证评估了这些生物标志物的分类效率。通过京都基因与基因组百科全书(KEGG)富集分析对与表型转化相关的候选蛋白质进行注释。

结果

基于共同蛋白质及其上调或下调促进疾病进展的假设,我们从与表型相关的PPINs中获得了12种共同蛋白质和11种水平特异性蛋白质。对共同蛋白质进行KEGG富集注释:(1)细胞因子-细胞因子受体相互作用;(2)造血细胞谱系;(3)Jak-STAT信号通路;(4)同种异体移植排斥;(5)T细胞受体信号通路。水平特异性蛋白质可能是具有诊断价值的潜在生物标志物。11种水平特异性蛋白质(IL-1R-1、IL-16、TIMP-1、G-CSF、MIG、IL-11、BLC、TNF-β、嗜酸性粒细胞趋化因子-2、I-309和IL-6 sR)的分类效能优于使用所有40种蛋白质的表现。

结论

该研究证明了基于PPINs的方法在理解炎症衍生机制和开发诊断生物标志物方面的潜在价值。需要进行独立评估以进一步估计新诊断生物标志物的临床相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验