Suppr超能文献

利用预测模型重建历史生境数据。

Reconstructing historical habitat data with predictive models.

出版信息

Ecol Appl. 2014 Jan;24(1):196-203. doi: 10.1890/13-0327.1.

Abstract

Historical vegetation data are important to ecological studies, as many structuring processes operate at long time scales, from decades to centuries. Capturing the pattern of variability within a system (enough to declare a significant change from past to present) relies on correct assumptions about the temporal scale of the processes involved. Sufficient long-term data are often lacking, and current techniques have their weaknesses. To address this concern, we constructed multistate and artificial neural network models (ANN) to provide fore- and hindcast vegetation communities considered critical foraging habitat for an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis). Multistate models were not able to hindcast due to our data not satisfying a detailed balance requirement for time reversibility in Markovian dynamics. Multistate models were useful for forecasting and providing environmental variables for the ANN. Results from our ANN hindcast closely mirrored the population collapse of the Snail Kite population using only environmental data to inform the model. The parallel between the two gives us confidence in the hindcasting results and their use in future demographic models.

摘要

历史植被数据对于生态研究很重要,因为许多结构过程作用于长时间尺度,从几十年到几个世纪不等。要捕捉系统内的可变性模式(足以宣布过去到现在的显著变化),需要对所涉及过程的时间尺度做出正确的假设。通常缺乏足够的长期数据,并且当前的技术存在其弱点。为了解决这个问题,我们构建了多状态和人工神经网络模型(ANN),以提供对濒危鸟类佛罗里达蜗牛鸢(Rostrhamus sociabilis)关键觅食栖息地的植被群落的预测和回溯。由于我们的数据不符合马尔可夫动力学时间可逆性的详细平衡要求,因此多状态模型无法进行回溯。多状态模型可用于预测并为 ANN 提供环境变量。我们的 ANN 回溯结果与仅使用环境数据为模型提供信息的蜗牛鸢种群的数量崩溃非常吻合。两者之间的相似之处使我们对回溯结果及其在未来人口模型中的应用充满信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验