Authors' Affiliations: General Clinical Lab/Mouse Cancer Clinic, The Netherlands Cancer Institute; Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam; Division of Drug Toxicology, Faculty of Pharmacy; Utrecht University, Utrecht; Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania; Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; and Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts.
Authors' Affiliations: General Clinical Lab/Mouse Cancer Clinic, The Netherlands Cancer Institute; Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam; Division of Drug Toxicology, Faculty of Pharmacy; Utrecht University, Utrecht; Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania; Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; and Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, MassachusettsAuthors' Affiliations: General Clinical Lab/Mouse Cancer Clinic, The Netherlands Cancer Institute; Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam; Division of Drug Toxicology, Faculty of Pharmacy; Utrecht University, Utrecht; Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania; Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; and Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts.
Clin Cancer Res. 2014 May 15;20(10):2703-13. doi: 10.1158/1078-0432.CCR-14-0084. Epub 2014 Mar 19.
Little is known about the optimal clinical use of ABT-888 (veliparib) for treatment of glioblastoma. ABT-888 is a PARP inhibitor undergoing extensive clinical evaluation in glioblastoma, because it may synergize with the standard-of-care temozolomide (TMZ). We have elucidated important factors controlling ABT-888 efficacy in glioblastoma.
We used genetically engineered spontaneous glioblastoma mouse models and allograft models that were orthotopically transplanted into wild-type (WT) and Abcb1/Abcg2-deficient (KO) recipients.
ABT-888/TMZ is not efficacious against p53;p16(Ink4a)/p19(Arf);K-Ras(v12);LucR allografts in wild-type recipients, indicating inherent resistance. Abcb1/Abcg2 mediated efflux of ABT-888 at the blood-brain barrier (BBB) causes a 5-fold reduction of ABT-888 brain penetration (P < 0.0001) that was fully reversible by elacridar. Efficacy studies in WT and KO recipients and/or concomitant elacridar demonstrate that Abcb1/Abcg2 at the BBB and in tumor cells impair TMZ/ABT-888 combination treatment efficacy. Elacridar also markedly improved TMZ/ABT-888 combination treatment in the spontaneous p53;p16(Ink4a)/p19(Arf);K-Ras(v12);LucR glioblastoma model. Importantly, ABT-888 does enhance TMZ efficacy in Pten deficient glioblastoma allografts and spontaneous tumors, even in Abcb1/Abcg2 proficient wild-type mice. Loss of PTEN occurs frequently in glioblastoma (36%) and in silico analysis on patient with glioblastoma samples revealed that it is associated with a worse overall survival (310 days vs. 620 days, n = 117).
The potential of ABT-888 in glioblastoma can best be demonstrated in patients with PTEN null tumors. Therefore, clinical trials with ABT-888 should evaluate these patients as a separate group. Importantly, inhibition of ABCB1 and ABCG2 (by elacridar) may improve the efficacy of TMZ/ABT-888 therapy in all glioblastoma patients.
关于 ABT-888(veliparib)用于治疗胶质母细胞瘤的最佳临床应用知之甚少。ABT-888 是一种正在广泛临床评估的 PARP 抑制剂,因为它可能与标准治疗药物替莫唑胺(TMZ)协同作用。我们已经阐明了控制胶质母细胞瘤中 ABT-888 疗效的重要因素。
我们使用基因工程自发胶质母细胞瘤小鼠模型和同种异体移植模型,将其原位移植到野生型(WT)和 Abcb1/Abcg2 缺陷(KO)受体中。
ABT-888/TMZ 对 p53;p16(Ink4a)/p19(Arf);K-Ras(v12);LucR 同种异体移植物在野生型受体中无效,表明存在固有耐药性。ABcb1/ABcg2 在血脑屏障(BBB)处将 ABT-888 外排导致 ABT-888 脑穿透减少 5 倍(P < 0.0001),而用 elacridar 可完全逆转。在 WT 和 KO 受体中的疗效研究和/或同时使用 elacridar 表明,BBB 处和肿瘤细胞中的 Abcb1/Abcg2 会损害 TMZ/ABT-888 联合治疗的疗效。elacridar 还显著改善了自发性 p53;p16(Ink4a)/p19(Arf);K-Ras(v12);LucR 胶质母细胞瘤模型中的 TMZ/ABT-888 联合治疗。重要的是,ABT-888 甚至在 Abcb1/Abcg2 功能正常的野生型小鼠中,也能增强 Pten 缺失的胶质母细胞瘤同种异体移植物和自发性肿瘤中 TMZ 的疗效。PTEN 的缺失在胶质母细胞瘤中经常发生(36%),对胶质母细胞瘤样本的计算机分析显示,它与总生存期更差相关(310 天与 620 天,n = 117)。
ABT-888 在胶质母细胞瘤中的潜力在 PTEN 缺失肿瘤的患者中表现最佳。因此,ABT-888 的临床试验应将这些患者作为单独的组别进行评估。重要的是,抑制 ABCB1 和 ABCG2(通过 elacridar)可能会提高所有胶质母细胞瘤患者 TMZ/ABT-888 治疗的疗效。