SPHYNX/SPEC, CEA-Saclay, URA 2464 CNRS, 91 191 Gif-sur-Yvette, France.
Soft Matter. 2014 Mar 14;10(10):1519-36. doi: 10.1039/c3sm51231b.
The zero temperature properties of frictionless soft spheres near the jamming point have been extensively studied both numerically and theoretically; these studies provide a reliable base for the interpretation of experiments. However, recent work by Ikeda et al. showed that, in a parameter space of the temperature and packing fraction, experiments to date on colloids have been rather far from the theoretical scaling regime. An important question is then whether theoretical results concerning point-J are applicable to any physical/experimental system, including granular media, which we consider here. On the surface, such a-thermal, frictional systems might appear even further from the idealized case of thermal soft spheres. In this work we address this question via experiments on shaken granular materials near jamming. We have systematically investigated such systems over a number of years using hard metallic grains. The important feature of the present work is the use of much softer grains, cut from photoelastic materials, making it possible to determine forces at the grain scale, the details of the contact networks and the motion of individual grains. Using this new type of particle, we first show that the contact network exhibits remarkable dynamics. We find strong heterogeneities, which are maximum at the packing fraction ϕ*, distinct from and smaller than the packing fraction ϕ(†), where the average number of contacts per particle, z, starts to increase. In the limit of zero mechanical excitation, these two packing fractions converge at point J. We also determine dynamics on time scales ranging from a small fraction of the shaking cycle to thousands of cycles. We can then map the observed system behavior onto results from simulations of ideal thermal soft spheres. Our results indicate that the ideal jamming point indeed illuminates the world of granular media.
无摩擦软球在临近堵塞点的零温特性已经在理论和数值上得到了广泛研究;这些研究为实验解释提供了可靠的基础。然而,最近 Ikeda 等人的工作表明,在温度和填充率的参数空间中,迄今为止胶体的实验结果与理论标度区域相差甚远。那么一个重要的问题是,关于点-J 的理论结果是否适用于任何物理/实验系统,包括我们在这里考虑的散粒体。从表面上看,这样的无热、摩擦系统可能比热软球的理想化情况更远离理想状态。在这项工作中,我们通过在临近堵塞的振动散粒体上进行实验来解决这个问题。我们使用硬金属颗粒系统地研究了这些系统多年。目前这项工作的重要特点是使用了更软的颗粒,这些颗粒是从光弹性材料切割而来的,这使得我们能够确定颗粒尺度上的力、接触网络的细节以及单个颗粒的运动。使用这种新型颗粒,我们首先表明接触网络表现出显著的动力学。我们发现了强烈的非均匀性,这些非均匀性在填充率 ϕ*处达到最大值,与开始增加每个颗粒接触数 z 的填充率 ϕ(†)不同且小于 ϕ(†)。在零机械激励的极限下,这两个填充率在点 J 处收敛。我们还确定了从振动周期的一小部分到数千个周期的时间尺度上的动力学。然后,我们可以将观察到的系统行为映射到理想热软球模拟的结果上。我们的结果表明,理想的堵塞点确实照亮了散粒体的世界。