Suppr超能文献

基底前脑的胆碱能输入为嗅球中的气味编码增加了兴奋性偏向。

Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb.

机构信息

Department of Neurobiology and Anatomy, Brain Institute, University of Utah, Salt Lake City, Utah 84103, and Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201.

出版信息

J Neurosci. 2014 Mar 26;34(13):4654-64. doi: 10.1523/JNEUROSCI.5026-13.2014.

Abstract

Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment.

摘要

胆碱能调制的中枢回路与主动感觉、注意力和学习有关,但胆碱能对感觉处理的影响所涉及的神经回路和时间动态仍不清楚。理解胆碱能调制对特定回路的影响很复杂,因为胆碱能神经元广泛投射到端脑结构,而这些结构本身高度互联。在这里,我们研究了基底前脑到嗅球(OB)的胆碱能投射如何调节小鼠嗅觉系统中第一级感觉处理的输出。通过光遗传学直接在 OB 中激活它们的轴突,我们发现基底前脑的胆碱能投射通过增加假定的僧帽细胞/丛细胞的尖峰输出来调节 OB 的输出。胆碱能刺激增加了僧帽细胞/丛细胞在没有吸入驱动的感觉输入的情况下的尖峰活动,并进一步增加了对无味空气和气味剂的尖峰反应。这种调制是快速和短暂的,依赖于 OB 中的局部胆碱能信号,并且与基底前脑中通过光遗传学激活胆碱能神经元的调制不同,后者导致僧帽细胞/丛细胞兴奋和抑制的混合。最后,OB 胆碱能增强僧帽细胞/丛细胞对气味剂的反应是强大的,并且独立于气味剂诱发反应的强度甚至极性发生,表明胆碱能调制相对于增加反应增益或锐化反应谱,向僧帽细胞/丛细胞添加兴奋性偏向。这些结果与基底前脑胆碱能系统在主动感知嗅觉环境期间动态调节对气味的敏感性或显著性的作用一致。

相似文献

1
Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb.
J Neurosci. 2014 Mar 26;34(13):4654-64. doi: 10.1523/JNEUROSCI.5026-13.2014.
3
Input dependent modulation of olfactory bulb activity by HDB GABAergic projections.
Sci Rep. 2020 Jul 1;10(1):10696. doi: 10.1038/s41598-020-67276-z.
4
Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
J Neurosci. 2018 Feb 28;38(9):2189-2206. doi: 10.1523/JNEUROSCI.0714-17.2018. Epub 2018 Jan 26.
5
GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
J Neurosci. 2016 Aug 10;36(32):8289-304. doi: 10.1523/JNEUROSCI.3823-15.2016.
8
Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb.
J Neurosci. 2021 Apr 21;41(16):3610-3621. doi: 10.1523/JNEUROSCI.1498-20.2021. Epub 2021 Mar 9.
9
Fast modulation of visual perception by basal forebrain cholinergic neurons.
Nat Neurosci. 2013 Dec;16(12):1857-1863. doi: 10.1038/nn.3552. Epub 2013 Oct 27.
10
Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.
J Neurosci. 2015 Apr 8;35(14):5680-92. doi: 10.1523/JNEUROSCI.4953-14.2015.

引用本文的文献

2
Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations.
J Neurosci. 2025 Mar 5;45(10):e1872242024. doi: 10.1523/JNEUROSCI.1872-24.2024.
4
Odor representation and coding by the mitral/tufted cells in the olfactory bulb.
J Zhejiang Univ Sci B. 2024 Oct 15;25(10):824-840. doi: 10.1631/jzus.B2400051.
5
Common principles for odour coding across vertebrates and invertebrates.
Nat Rev Neurosci. 2024 Jul;25(7):453-472. doi: 10.1038/s41583-024-00822-0. Epub 2024 May 28.
6
Cell type-specific and frequency-dependent centrifugal modulation in olfactory bulb output neurons in vivo.
J Neurophysiol. 2024 Jun 1;131(6):1226-1239. doi: 10.1152/jn.00078.2024. Epub 2024 May 1.
7
RNA sequencing of olfactory bulb in Parkinson's disease reveals gene alterations associated with olfactory dysfunction.
Neurobiol Dis. 2024 Jun 15;196:106514. doi: 10.1016/j.nbd.2024.106514. Epub 2024 Apr 24.
8
Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells.
PLoS Biol. 2024 Mar 1;22(3):e3002536. doi: 10.1371/journal.pbio.3002536. eCollection 2024 Mar.
9
Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight.
Neurophotonics. 2024 Jul;11(3):033402. doi: 10.1117/1.NPh.11.3.033402. Epub 2024 Jan 17.
10
Coherent olfactory bulb gamma oscillations arise from coupling independent columnar oscillators.
J Neurophysiol. 2024 Mar 1;131(3):492-508. doi: 10.1152/jn.00361.2023. Epub 2024 Jan 24.

本文引用的文献

1
Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons.
J Neurosci. 2014 Feb 19;34(8):2832-44. doi: 10.1523/JNEUROSCI.3235-13.2014.
3
Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output.
Neuron. 2013 Dec 4;80(5):1232-45. doi: 10.1016/j.neuron.2013.08.027. Epub 2013 Nov 14.
4
Parvalbumin-expressing interneurons linearly control olfactory bulb output.
Neuron. 2013 Dec 4;80(5):1218-31. doi: 10.1016/j.neuron.2013.08.036. Epub 2013 Nov 14.
5
The basal forebrain modulates spontaneous activity of principal cells in the main olfactory bulb of anesthetized mice.
Front Neural Circuits. 2013 Sep 20;7:148. doi: 10.3389/fncir.2013.00148. eCollection 2013.
6
Multiple perceptible signals from a single olfactory glomerulus.
Nat Neurosci. 2013 Nov;16(11):1687-91. doi: 10.1038/nn.3519. Epub 2013 Sep 22.
7
Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14777-82. doi: 10.1073/pnas.1310686110. Epub 2013 Aug 19.
8
Nicotinic receptors modulate olfactory bulb external tufted cells via an excitation-dependent inhibitory mechanism.
J Neurophysiol. 2013 Oct;110(7):1544-53. doi: 10.1152/jn.00865.2012. Epub 2013 Jul 10.
10
Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb.
Front Neural Circuits. 2013 Mar 1;7:32. doi: 10.3389/fncir.2013.00032. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验