Rodríguez-Sanz Ana A, Cabaleiro-Lago Enrique M, Rodríguez-Otero Jesús
Departamento de Química Física, Facultade de Ciencias, Universidade de Santiago de Compostela, Campus de Lugo. Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain.
Org Biomol Chem. 2014 May 14;12(18):2938-49. doi: 10.1039/c3ob42388c.
A computational study has been carried out in complexes formed by pyrrolidinium cation and aromatic units present in amino acid side chains. The interaction is stronger with indole (-21.9 kcal mol(-1) at the CCSD(T) complete basis set level) than with phenol (-17.4 kcal mol(-1)) or benzene (-16.1 kcal mol(-1)). Most stable structures show a N-H···π contact between pyrrolidinium cation and the phenyl ring of the three aromatic species, except in phenol complexes where the most stable minimum shows a N-HO hydrogen bond. In phenol and indole complexes, secondary contacts are established between the C-H groups of the carbon skeleton of pyrrolidinium and the aromatic rings or hydroxyl oxygen, being the main reason for the enhanced stability with respect to benzene, where these contacts are not possible. The interaction is mainly controlled by electrostatics, but contributions from induction and dispersion are also significant, especially the latter in indole complexes. These three attractive contributions increase their intensity when going from benzene to phenol and indole. Microhydration effects have been estimated by including up to three water molecules in the complexes. In monohydrated pyrrolidiniumbenzene complex the most stable structure shows the water molecule coordinated to the cation without interacting with the ring. In phenol and indole, otherwise, the water molecule interacts with both the cation and the aromatic species, forming a cyclic hydrogen bond pattern π(phenyl)···H-N-H···O-H···X (X = π, O). This pattern is also present among the most stable structures found for complexes with two and three water molecules, though a variety of almost isoenergetic minima showing different hydrogen bond patterns have been found. Water molecules remove the stability differences between phenol and indole complexes, which already with two water molecules show similar stabilities, though around 5 kcal mol(-1) larger than benzene ones.
对由吡咯烷鎓阳离子与氨基酸侧链中存在的芳香单元形成的配合物进行了计算研究。与吲哚的相互作用更强(在CCSD(T)完全基组水平下为-21.9 kcal mol⁻¹),强于与苯酚(-17.4 kcal mol⁻¹)或苯(-16.1 kcal mol⁻¹)的相互作用。除了苯酚配合物中最稳定的极小值显示出N-HO氢键外,大多数稳定结构在吡咯烷鎓阳离子与三种芳香物种的苯环之间显示出N-H···π接触。在苯酚和吲哚配合物中,吡咯烷鎓碳骨架的C-H基团与芳香环或羟基氧之间建立了二级接触,这是相对于苯稳定性增强的主要原因,因为在苯中不可能有这些接触。相互作用主要由静电作用控制,但诱导和色散的贡献也很显著,特别是在吲哚配合物中后者的贡献。当从苯到苯酚再到吲哚时,这三种吸引作用的强度都会增加。通过在配合物中最多包含三个水分子来估计微水合效应。在一水合吡咯烷鎓苯配合物中,最稳定的结构显示水分子与阳离子配位而不与环相互作用。否则,在苯酚和吲哚中,水分子与阳离子和芳香物种都相互作用,形成环状氢键模式π(苯基)···H-N-H···O-H···X(X = π,O)。这种模式也存在于含有两个和三个水分子的配合物中发现的最稳定结构中,不过也发现了各种显示不同氢键模式的几乎等能量的极小值。水分子消除了苯酚和吲哚配合物之间的稳定性差异,含有两个水分子时它们已经显示出相似的稳定性,尽管比苯配合物的稳定性大约高5 kcal mol⁻¹。