Shen Juan, He Xuming
a Department of Statistics , University of Michigan , Ann Arbor , Michigan , USA.
J Biopharm Stat. 2014;24(3):523-34. doi: 10.1080/10543406.2014.888435.
We consider the problem of detecting treatment effects in a randomized trial in the presence of an additional covariate. By reexpressing a two-way analysis of variance (ANOVA) model in a logistic regression framework, we derive generalized F tests and generalized deviance tests, which provide better power in detecting common location-scale changes of treatment outcomes than the classical F test. The null distributions of the test statistics are independent of the nuisance parameters in the models, so the critical values can be easily determined by Monte Carlo methods. We use simulation studies to demonstrate how the proposed tests perform compared with the classical F test. We also use data from a clinical study to illustrate possible savings in sample sizes.
我们考虑在存在额外协变量的随机试验中检测治疗效果的问题。通过在逻辑回归框架中重新表达双向方差分析(ANOVA)模型,我们推导出广义F检验和广义偏差检验,与经典F检验相比,它们在检测治疗结果的常见位置尺度变化方面具有更强的功效。检验统计量的零分布与模型中的干扰参数无关,因此临界值可以通过蒙特卡罗方法轻松确定。我们使用模拟研究来证明所提出的检验与经典F检验相比的表现。我们还使用一项临床研究的数据来说明样本量可能的节省情况。