Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
Carbohydr Polym. 2014 Jul 17;107:110-8. doi: 10.1016/j.carbpol.2014.02.026. Epub 2014 Feb 22.
Pectin, a naturally occurring and biorenewable polysaccharide, is derived from plant cell wall tissue and used in applications ranging from food processing to biomedical engineering. Due to extraction methods and source variation, there is currently no consensus in literature as to the exact structure of pectin. Here, we have studied key material properties of electrospun pectin blends with polyethylene oxide (PEO) (1:1, v/v) in order to demonstrate the fabrication of a fibrous and less toxic material system, as well as to understand the effects of source variability on the resulting fibrous mats. The bulk pectin degree of esterification (DE) estimated using FTIR (bulk apple pomace (AP)=28%, bulk citrus peel (CP)=86% and bulk sugar beet pulp (SBP)=91%) was shown to inversely correlate with electrospun fiber crystallinity determined using XRD (PEO-AP=37%, PEO-CP=28% and PEO-SBP=23%). This in turn affected the trend observed for the mean fiber diameter (n=50) (PEO-AP=124 ± 26 nm, PEO-CP=493 ± 254 nm and PEO-SBP=581 ± 178 nm) and elastic tensile moduli (1.6 ± 0.2 MPa, 4.37 ± 0.64 MPa and 2.49 ± 1.46 MPa, respectively) of the fibrous mats. Electrospun fibers containing bulk AP had the lowest DE, highest crystallinity, smallest mean fiber diameter, and lowest tensile modulus compared to either the bulk CP or bulk SBP. Bound water in PEO-CP fiber and bulk pectin impurities in PEO-SPB were observed to influence fiber branching and mean diameter distributions, which in turn influenced the fiber tensile properties. These results indicate that pectin, when blended with PEO in water, produces submicron fibrous mats with pectin influencing the blend fiber properties. Moreover, the source of pectin is an important variable in creating electrospun blend fibrous mats with desired material properties.
果胶是一种天然可再生的多糖,来源于植物细胞壁组织,广泛应用于食品加工和生物医学工程等领域。由于提取方法和来源的不同,目前文献中对于果胶的确切结构尚未达成共识。在这里,我们研究了电纺果胶与聚乙烯氧化物(PEO)(1:1,v/v)混合物的关键材料性能,旨在展示一种纤维状且毒性较低的材料体系的制造方法,并了解来源变化对纤维毡的影响。使用傅里叶变换红外光谱(FTIR)估计的块状果胶酯化度(DE)(块状苹果渣(AP)=28%,块状柑橘皮(CP)=86%和块状糖甜菜浆(SBP)=91%)与使用 X 射线衍射(XRD)确定的电纺纤维结晶度呈反比(PEO-AP=37%,PEO-CP=28%和 PEO-SBP=23%)。这反过来又影响了观察到的平均纤维直径(n=50)的趋势(PEO-AP=124±26nm,PEO-CP=493±254nm 和 PEO-SBP=581±178nm)和纤维毡的弹性拉伸模量(1.6±0.2MPa、4.37±0.64MPa 和 2.49±1.46MPa)。与块状 CP 或 SBP 相比,含有块状 AP 的电纺纤维具有最低的 DE、最高的结晶度、最小的平均纤维直径和最低的拉伸模量。观察到 PEO-CP 纤维中的结合水和 PEO-SPB 中大块果胶杂质影响纤维分支和平均直径分布,进而影响纤维拉伸性能。这些结果表明,当果胶与 PEO 在水中混合时,会产生亚微米纤维毡,其中果胶影响混合物纤维的性能。此外,果胶的来源是创造具有所需材料性能的电纺混合物纤维毡的重要变量。