Suppr超能文献

根瘤菌半乳葡聚糖决定了黄色粘球菌的捕食模式,并保护了苜蓿中华根瘤菌免受捕食。

Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.

机构信息

Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain.

出版信息

Environ Microbiol. 2014 Jul;16(7):2341-50. doi: 10.1111/1462-2920.12477. Epub 2014 Apr 28.

Abstract

Myxococcus xanthus is a social bacterium that preys on prokaryotic and eukaryotic microorganisms. Co-culture of M. xanthus with reference laboratory strains and field isolates of the legume symbiont Sinorhizobium meliloti revealed two different predatory patterns that resemble frontal and wolf-pack attacks. Use of mutants impaired in the two types of M. xanthus surface motility (A or adventurous and S or social motility) and a csgA mutant, which is unable to form macroscopic travelling waves known as ripples, has demonstrated that both motility systems but not rippling are required for efficient predation. To avoid frontal attack and reduce killing rates, rhizobial cells require a functional expR gene. ExpR regulates expression of genes involved in a variety of functions. The use of S. meliloti mutants impaired in several of these functions revealed that the exopolysaccharide galactoglucan (EPS II) is the major determinant of the M. xanthus predatory pattern. The data also suggest that this biopolymer confers an ecological advantage to rhizobial survival in soil, which may have broad environmental implications.

摘要

粘球菌是一种以原核生物和真核微生物为食的社会性细菌。将粘球菌与参考实验室菌株和豆科植物共生体苜蓿中华根瘤菌的田间分离株共培养,揭示了两种类似正面攻击和狼群攻击的不同捕食模式。使用两种类型的粘球菌表面运动(A 型或冒险运动和 S 型或社会运动)缺陷突变体和不能形成称为波纹的宏观游动波的 csgA 突变体的实验表明,两种运动系统而不是波纹对于有效的捕食是必需的。为了避免正面攻击和降低杀伤率,根瘤菌细胞需要一个功能正常的 expR 基因。ExpR 调节多种功能相关基因的表达。使用在这些功能中的几个方面都有缺陷的 S. meliloti 突变体的实验表明,葡甘露聚糖(EPS II)是粘球菌捕食模式的主要决定因素。这些数据还表明,这种生物聚合物赋予了根瘤菌在土壤中生存的生态优势,这可能具有广泛的环境意义。

相似文献

1
Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.
Environ Microbiol. 2014 Jul;16(7):2341-50. doi: 10.1111/1462-2920.12477. Epub 2014 Apr 28.
2
Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti.
J Bacteriol. 2008 Aug;190(15):5308-17. doi: 10.1128/JB.00063-08. Epub 2008 May 30.
3
PCR analysis of expR gene regulating biosynthesis of exopolysaccharides in Sinorhizobium meliloti.
Biochem Mol Biol Educ. 2012 Mar-Apr;40(2):108-11. doi: 10.1002/bmb.20560. Epub 2011 Dec 7.
5
EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells.
Curr Microbiol. 2010 Nov;61(5):465-70. doi: 10.1007/s00284-010-9639-9. Epub 2010 Apr 11.
6
MucR is necessary for galactoglucan production in Sinorhizobium meliloti EFB1.
Mol Plant Microbe Interact. 2000 Jan;13(1):129-35. doi: 10.1094/MPMI.2000.13.1.129.
9
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
J Bacteriol. 2018 Jan 10;200(3). doi: 10.1128/JB.00501-17. Print 2018 Feb 1.
10
Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021.
FEMS Microbiol Lett. 2010 Jan;302(1):15-21. doi: 10.1111/j.1574-6968.2009.01826.x. Epub 2009 Oct 22.

引用本文的文献

1
The Limits of Our Explanation: A Case Study in Cooperation.
Biol Theory. 2025;20(1):25-40. doi: 10.1007/s13752-024-00479-z. Epub 2024 Nov 12.
2
Siderophores and competition for iron govern myxobacterial predation dynamics.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae077.
3
predation: an updated overview.
Front Microbiol. 2024 Jan 24;15:1339696. doi: 10.3389/fmicb.2024.1339696. eCollection 2024.
4
Genetic components of involved in its complex prey-predator interaction with .
Front Microbiol. 2023 Dec 5;14:1304874. doi: 10.3389/fmicb.2023.1304874. eCollection 2023.
5
The role of microbial interactions on rhizobial fitness.
Front Plant Sci. 2023 Oct 9;14:1277262. doi: 10.3389/fpls.2023.1277262. eCollection 2023.
6
Two reasons to kill: predation and kin discrimination in myxobacteria.
Microbiology (Reading). 2023 Jul;169(7). doi: 10.1099/mic.0.001372.
7
Transcriptomic response of to the predatory attack of .
Front Microbiol. 2023 Jun 19;14:1213659. doi: 10.3389/fmicb.2023.1213659. eCollection 2023.
8
Lysis profile and preference of sp. PT13 for typical soil bacteria.
Front Microbiol. 2023 Jun 12;14:1211756. doi: 10.3389/fmicb.2023.1211756. eCollection 2023.
9
Predatory Strategies of : Prey Susceptibility to OMVs and Moonlighting Enzymes.
Microorganisms. 2023 Mar 29;11(4):874. doi: 10.3390/microorganisms11040874.
10
Development versus predation: Transcriptomic changes during the lifecycle of .
Front Microbiol. 2022 Sep 26;13:1004476. doi: 10.3389/fmicb.2022.1004476. eCollection 2022.

本文引用的文献

1
Interactions Between Myxobacteria, Plant Pathogenic Fungi, and Biocontrol Agents.
Plant Dis. 2002 Aug;86(8):889-896. doi: 10.1094/PDIS.2002.86.8.889.
2
Nodulation competitiveness in the Rhizobium-legume symbiosis.
World J Microbiol Biotechnol. 1996 Mar;12(2):157-62. doi: 10.1007/BF00364680.
3
Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage.
J Bacteriol. 2013 Dec;195(23):5362-9. doi: 10.1128/JB.00681-13. Epub 2013 Sep 27.
4
Decomposing predation: testing for parameters that correlate with predatory performance by a social bacterium.
Microb Ecol. 2013 Feb;65(2):415-23. doi: 10.1007/s00248-012-0135-6. Epub 2012 Nov 27.
6
The mechanistic basis of Myxococcus xanthus rippling behavior and its physiological role during predation.
PLoS Comput Biol. 2012;8(9):e1002715. doi: 10.1371/journal.pcbi.1002715. Epub 2012 Sep 27.
7
ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti.
J Bacteriol. 2012 Apr;194(8):2027-35. doi: 10.1128/JB.06524-11. Epub 2012 Feb 10.
8
Antibiotic production by myxobacteria plays a role in predation.
J Bacteriol. 2011 Sep;193(18):4626-33. doi: 10.1128/JB.05052-11. Epub 2011 Jul 15.
9
Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.
Microb Biotechnol. 2011 Mar;4(2):175-83. doi: 10.1111/j.1751-7915.2010.00208.x. Epub 2010 Sep 27.
10
Comparative analysis of myxococcus predation on soil bacteria.
Appl Environ Microbiol. 2010 Oct;76(20):6920-7. doi: 10.1128/AEM.00414-10. Epub 2010 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验