Baranau Vasili, Tallarek Ulrich
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.
Soft Matter. 2014 Jun 7;10(21):3826-41. doi: 10.1039/c3sm52959b. Epub 2014 Apr 11.
We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10(4) frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lubachevsky-Stillinger and force-biased algorithms are distributed in a narrow density range from φ = 0.634-0.636 to φ≈ 0.64; closest jamming densities for monodisperse packings generated with low compression rates converge to φ≈ 0.65 and grow rapidly when crystallization starts with very low compression rates. We interpret φ≈ 0.64 as the random-close packing (RCP) limit and φ≈ 0.65 as a lower bound of the glass close packing (GCP) limit, whereas φ = 0.634-0.636 is attributed to another characteristic (lowest typical, LT) density φLT. The three characteristic densities φLT, φRCP, and φGCP are determined for polydisperse packings with log-normal sphere radii distributions.
我们研究了对于由10⁴个无摩擦硬球组成的堆积,我们称之为最紧密堵塞构型的固有结构密度是如何分布的。引入了一种计算算法来生成最紧密堵塞构型并确定相应的密度。使用卢巴切夫斯基 - 斯蒂林格算法和力偏置算法以高压缩率生成的单分散堆积的最紧密堵塞密度分布在一个狭窄的密度范围内,从φ = 0.634 - 0.636到φ≈0.64;以低压缩率生成的单分散堆积的最紧密堵塞密度收敛到φ≈0.65,并且当以非常低的压缩率开始结晶时迅速增加。我们将φ≈0.64解释为随机密堆积(RCP)极限,将φ≈0.65解释为玻璃密堆积(GCP)极限的下限,而φ = 0.634 - 0.636归因于另一个特征(最低典型,LT)密度φLT。对于具有对数正态球半径分布的多分散堆积,确定了三个特征密度φLT、φRCP和φGCP。