Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, Massachusetts, United States.
ACS Nano. 2014 Jun 24;8(6):5527-34. doi: 10.1021/nn406107q. Epub 2014 Apr 22.
Long-lived exciton coherences have been recently observed in photosynthetic complexes via ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments against interpreting them in terms of exciton dynamics, demanding more stringent tests. We propose a novel strategy, quantum process tomography (QPT), for ultrafast spectroscopy and apply it to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature from eight narrowband transient grating experiments. Our analysis reveals the absence of nonsecular processes, unidirectional energy transfer from the outer to the inner wall exciton states, and coherence between those states lasting about 150 fs, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a "warm" and complex system and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.
长寿命激子相干已经在最近通过超快光谱学在光合作用复合物中被观察到,为相干激子输运的研究和设计开辟了令人兴奋的可能性。然而,光谱信号的模糊性导致了反对根据激子动力学来解释它们的论点,需要更严格的测试。我们提出了一种新的策略,即量子过程层析成像(QPT),用于超快光谱学,并将其应用于从八个窄带瞬态光栅实验中重建室温下双层超分子光捕获纳米管中激子的演化量子态。我们的分析表明不存在非定域过程,从外壁到内壁激子态的单向能量转移,以及这些态之间持续约 150 fs 的相干性,表明壁之间的电子耦合较弱。我们的工作构成了“温暖”和复杂系统中的第一个实验 QPT,并提供了一种从超快光谱学实验中最大化信息的优雅方案。