Suppr超能文献

随机环境中接触过程、随机游走和量子自旋链中动力学量的分布。

Distribution of dynamical quantities in the contact process, random walks, and quantum spin chains in random environments.

作者信息

Juhász Róbert

机构信息

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49, Hungary.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032108. doi: 10.1103/PhysRevE.89.032108. Epub 2014 Mar 10.

Abstract

We study the distribution of dynamical quantities in various one-dimensional disordered models, the critical behavior of which is described by an infinite randomness fixed point. In the disordered contact process, the survival probability P(t) is found to show multiscaling in the critical point, meaning that P(t)=t-δ, where the (environment and time-dependent) exponent δ has a universal limit distribution when t→∞. The limit distribution is determined by the strong disorder renormalization group method analytically in the end point of a semi-infinite lattice, where it is found to be exponential, while, in the infinite system, conjectures on its limiting behaviors for small and large δ, which are based on numerical results, are formulated. By the same method, the survival probability in the problem of random walks in random environments is also shown to exhibit multiscaling with an exponential limit distribution. In addition to this, the (imaginary-time) spin-spin autocorrelation function of the random transverse-field Ising chain is found to have a form similar to that of survival probability of the contact process at the level of the renormalization approach. Consequently, a relationship between the corresponding limit distributions in the two problems can be established. Finally, the distribution of the spontaneous magnetization in this model is also discussed.

摘要

我们研究了各种一维无序模型中动力学量的分布,其临界行为由无限随机不动点描述。在无序接触过程中,发现生存概率(P(t))在临界点呈现多标度性,即(P(t)=t^{-\delta}),其中(依赖于环境和时间的)指数(\delta)在(t\rightarrow\infty)时有一个普适极限分布。通过半无限晶格端点处的强无序重整化群方法解析地确定了该极限分布,发现其为指数分布,而在无限系统中,基于数值结果对小(\delta)和大(\delta)时其极限行为进行了推测。通过同样的方法,还表明随机环境中随机游走问题的生存概率也呈现多标度性且具有指数极限分布。除此之外,发现在重整化方法层面上,随机横向场伊辛链的(虚时)自旋 - 自旋自相关函数具有与接触过程生存概率相似的形式。因此,可以建立这两个问题中相应极限分布之间的关系。最后,还讨论了该模型中自发磁化强度的分布。

相似文献

1
Distribution of dynamical quantities in the contact process, random walks, and quantum spin chains in random environments.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032108. doi: 10.1103/PhysRevE.89.032108. Epub 2014 Mar 10.
2
Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066107. doi: 10.1103/PhysRevE.64.066107. Epub 2001 Nov 14.
3
Infinite-randomness critical point in the two-dimensional disordered contact process.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011111. doi: 10.1103/PhysRevE.79.011111. Epub 2009 Jan 12.
4
Griffiths-McCoy singularities in random quantum spin chains: exact results through renormalization.
Phys Rev Lett. 2001 Feb 12;86(7):1343-6. doi: 10.1103/PhysRevLett.86.1343.
5
Spin models with random anisotropy and reflection symmetry.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036104. doi: 10.1103/PhysRevE.70.036104. Epub 2004 Sep 10.
6
Infinite-randomness fixed points for chains of non-Abelian quasiparticles.
Phys Rev Lett. 2007 Oct 5;99(14):140405. doi: 10.1103/PhysRevLett.99.140405.
7
Absorbing state phase transitions with quenched disorder.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066140. doi: 10.1103/PhysRevE.69.066140. Epub 2004 Jun 23.
8
Many-body localization in one dimension as a dynamical renormalization group fixed point.
Phys Rev Lett. 2013 Feb 8;110(6):067204. doi: 10.1103/PhysRevLett.110.067204. Epub 2013 Feb 7.
9
Random walkers in one-dimensional random environments: exact renormalization group analysis.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt A):4795-840. doi: 10.1103/physreve.59.4795.
10
Random Quantum Ising Model with Three-Spin Couplings.
Entropy (Basel). 2024 Aug 21;26(8):709. doi: 10.3390/e26080709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验