Parthey Matthias, Gluyas Josef B G, Fox Mark A, Low Paul J, Kaupp Martin
Technische Universität Berlin, Institut für Chemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin (Germany).
Chemistry. 2014 Jun 2;20(23):6895-908. doi: 10.1002/chem.201304947. Epub 2014 Apr 16.
The conformational energy landscape and the associated electronic structure and spectroscopic properties (UV/Vis/near-infrared (NIR) and IR) of three formally d(5)/d(6) mixed-valence diruthenium complex cations, {Ru(dppe)Cp*}2(μ-C≡CC6H4C≡C), 1, trans-{RuCl(dppe)2}2(μ-C≡CC6H4C≡C), 2, and the Creutz-Taube ion, {Ru(NH3)5}2(μ-pz), 3 (Cp = cyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; pz = pyrazine), have been studied using a nonstandard hybrid density functional BLYP35 with 35 % exact exchange and continuum solvent models. For the closely related monocations 1 and 2, the calculations indicated that the lowest-energy conformers exhibited delocalized electronic structures (or class III mixed-valence character). However, these minima alone explained neither the presence of shoulder(s) in the NIR absorption envelope nor the presence of features in the observed vibrational spectra characteristic of both delocalized and valence-trapped electronic structures. A series of computational models have been used to demonstrate that the mutual conformation of the metal fragments--and even more importantly the orientation of the bridging ligand relative to those metal centers--influences the electronic coupling sufficiently to afford valence-trapped conformations, which are of sufficiently low energy to be thermally populated. Areas in the conformational phase space with variable degrees of symmetry breaking of structures and spin-density distributions are shown to be responsible for the characteristic spectroscopic features of these two complexes. The Creutz-Taube ion 3 also exhibits low-lying valence-trapped conformational areas, but the electronic transitions that characterize these conformations with valence-localized electronic structures have low intensities and do not influence the observed spectroscopic characteristics to any notable extent.
使用具有35%精确交换的非标准杂化密度泛函BLYP35和连续介质溶剂模型,研究了三种形式上为d(5)/d(6)的混合价二钌络合阳离子{Ru(dppe)Cp*}2(μ-C≡CC6H4C≡C)、1、trans-{RuCl(dppe)2}2(μ-C≡CC6H4C≡C)、2以及Creutz-Taube离子{Ru(NH3)5}2(μ-pz)、3(Cp = 环戊二烯基;dppe = 1,2-双(二苯基膦基)乙烷;pz = 吡嗪)的构象能量景观以及相关的电子结构和光谱性质(紫外/可见/近红外(NIR)和红外)。对于密切相关的单核阳离子1和2,计算表明能量最低的构象体表现出离域电子结构(或III类混合价特征)。然而,仅这些极小值既不能解释近红外吸收包络中肩峰的存在,也不能解释观察到的具有离域和价态捕获电子结构特征的振动光谱中的特征峰的存在。一系列计算模型已被用于证明金属片段的相互构象——更重要的是桥连配体相对于那些金属中心的取向——对电子耦合的影响足以产生价态捕获构象,其能量足够低以至于可以热填充。结构和自旋密度分布具有不同程度对称性破缺的构象相空间区域被证明是这两种络合物特征光谱特征的原因。Creutz-Taube离子3也表现出低位的价态捕获构象区域,但表征这些具有价态局域电子结构的构象的电子跃迁强度较低,并且在任何显著程度上都不影响观察到的光谱特征。