Mirzaa Ghayda M, Vitre Benjamin, Carpenter Gillian, Abramowicz Iga, Gleeson Joseph G, Paciorkowski Alex R, Cleveland Don W, Dobyns William B, O'Driscoll Mark
Division of Genetic Medicine, Department of Pediatrics, Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA.
Hum Genet. 2014 Aug;133(8):1023-39. doi: 10.1007/s00439-014-1443-3. Epub 2014 Apr 20.
Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.
中心体、中心体相关蛋白和纺锤体相关蛋白的缺陷是人类原发性小头畸形(PM)和小头畸形原始侏儒症(MPD)综合征最常见的病因。在这些患者的细胞系中,已记录到有丝分裂进程和分离缺陷、微管纺锤体异常以及DNA损伤诱导的G2-M细胞周期检查点功能受损。这表明有丝分裂进入、进程和退出受损是导致PM和MPD的重要原因。考虑到参与协调这一细胞周期阶段的庞大蛋白质网络,可能成为新型发育障碍潜在靶点的基因众多。一个这样的复杂网络是动粒,它通过微管与中心体直接建立物理连接。这种着丝粒相关结构使微管附着在有丝分裂染色体上。在此,我们描述了两个兄弟姐妹中CENPE基因的新型复合杂合变异,他们表现出严重的MPD,伴有发育迟缓、脑回简化和其他孤立异常。CENPE编码着丝粒相关蛋白E(CENP-E),这是一种核心动粒成分,其功能是在有丝分裂期间,首先介导未对齐染色体的染色体汇聚,随后介导纺锤体微管捕获。首先,我们对这些患者进行了全面的临床描述。然后,我们使用患者细胞记录了纺锤体微管组织、有丝分裂进程和分离方面的异常,之后在一个独立的细胞系统中模拟这些变异的细胞致病性。我们的细胞分析表明,动粒核心蛋白CENP-E中的致病性缺陷在很大程度上模拟了PCNT突变的小头畸形骨发育不良原始侏儒症II型患者细胞的表型。PCNT编码一种中心体相关蛋白。这些结果突出了一个共同的潜在发病机制。我们的研究结果为人类MPD基于动粒的发病途径提供了首个证据。