Suppr超能文献

人类细胞周期蛋白依赖性激酶8(CDK8)的全原子分子动力学研究:深入了解A环、点突变及其与伴侣细胞周期蛋白C(CycC)的结合。

All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC.

作者信息

Xu Wu, Amire-Brahimi Benjamin, Xie Xiao-Jun, Huang Liying, Ji Jun-Yuan

机构信息

Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.

Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.

出版信息

Comput Biol Chem. 2014 Aug;51:1-11. doi: 10.1016/j.compbiolchem.2014.03.003. Epub 2014 Apr 3.

Abstract

The Mediator, a conserved multisubunit protein complex in eukaryotic organisms, regulates gene expression by bridging sequence-specific DNA-binding transcription factors to the general RNA polymerase II machinery. In yeast, Mediator complex is organized in three core modules (head, middle and tail) and a separable 'CDK8 submodule' consisting of four subunits including Cyclin-dependent kinase CDK8 (CDK8), Cyclin C (CycC), MED12, and MED13. The 3-D structure of human CDK8-CycC complex has been recently experimentally determined. To take advantage of this structure and the improved theoretical calculation methods, we have performed molecular dynamic simulations to study dynamics of CDK8 and two CDK8 point mutations (D173A and D189N), which have been identified in human cancers, with and without full length of the A-loop, as well as the binding between CDK8 and CycC. We found that CDK8 structure gradually loses two helical structures during the 50-ns molecular dynamic simulation, likely due to the presence of the full-length A-loop. In addition, our studies showed the hydrogen bond occupation of the CDK8 A-loop increases during the first 20-ns MD simulation and stays stable during the later 30-ns MD simulation. Four residues in the A-loop of CDK8 have high hydrogen bond occupation, while the rest residues have low or no hydrogen bond occupation. The hydrogen bond dynamic study of the A-loop residues exhibits three types of changes: increasing, decreasing, and stable. Furthermore, the 3-D structures of CDK8 point mutations D173A, D189N, T196A and T196D have been built by molecular modeling and further investigated by 50-ns molecular dynamic simulations. D173A has the highest average potential energy, while T196D has the lowest average potential energy, indicating that T196D is the most stable structure. Finally, we calculated theoretical binding energy of CDK8 and CycC by MM/PBSA and MM/GBSA methods, and the negative values obtained from both methods demonstrate stability of CDK8-CycC complex. Taken together, these analyses will improve our understanding of the exact functions of CDK8 and the interaction with its partner CycC.

摘要

中介体是真核生物中一种保守的多亚基蛋白质复合物,它通过将序列特异性DNA结合转录因子与通用RNA聚合酶II机制连接起来,调节基因表达。在酵母中,中介体复合物由三个核心模块(头部、中部和尾部)和一个可分离的“CDK8亚模块”组成,该亚模块由四个亚基组成,包括细胞周期蛋白依赖性激酶CDK8(CDK8)、细胞周期蛋白C(CycC)、MED12和MED13。人类CDK8 - CycC复合物的三维结构最近已通过实验确定。为了利用这一结构和改进的理论计算方法,我们进行了分子动力学模拟,以研究CDK8和在人类癌症中已被鉴定出的两个CDK8点突变(D173A和D189N)在有无全长A环情况下的动力学,以及CDK8与CycC之间的结合。我们发现,在50纳秒的分子动力学模拟过程中,CDK8结构逐渐失去两个螺旋结构,这可能是由于全长A环的存在。此外,我们的研究表明,在最初20纳秒的分子动力学模拟中,CDK8 A环的氢键占有率增加,在随后30纳秒的分子动力学模拟中保持稳定。CDK8 A环中的四个残基具有较高的氢键占有率,而其余残基的氢键占有率较低或没有。A环残基的氢键动力学研究呈现出三种变化类型:增加、减少和稳定。此外,通过分子建模构建了CDK8点突变D173A、D189N、T196A和T196D的三维结构,并通过50纳秒的分子动力学模拟进行了进一步研究。D173A的平均势能最高,而T196D的平均势能最低,表明T196D是最稳定的结构。最后,我们通过MM/PBSA和MM/GBSA方法计算了CDK8和CycC的理论结合能,两种方法得到的负值都证明了CDK8 - CycC复合物的稳定性。综上所述,这些分析将增进我们对CDK8确切功能及其与伴侣CycC相互作用的理解。

相似文献

1
All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC.
Comput Biol Chem. 2014 Aug;51:1-11. doi: 10.1016/j.compbiolchem.2014.03.003. Epub 2014 Apr 3.
2
A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery.
J Comput Aided Mol Des. 2018 Jun;32(6):671-685. doi: 10.1007/s10822-018-0120-3. Epub 2018 May 8.
4
The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder.
J Mol Biol. 2011 Sep 16;412(2):251-66. doi: 10.1016/j.jmb.2011.07.020. Epub 2011 Jul 23.
6
The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription.
PLoS Genet. 2020 May 28;16(5):e1008832. doi: 10.1371/journal.pgen.1008832. eCollection 2020 May.
7
Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19.
J Biol Chem. 2018 Mar 30;293(13):4870-4882. doi: 10.1074/jbc.RA118.001725. Epub 2018 Feb 13.
8
Dysregulation of CDK8 and Cyclin C in tumorigenesis.
J Genet Genomics. 2011 Oct 20;38(10):439-52. doi: 10.1016/j.jgg.2011.09.002. Epub 2011 Sep 16.
9
Distinct effects of CDK8 module subunits on cellular growth and proliferation in .
bioRxiv. 2024 May 3:2024.04.30.591924. doi: 10.1101/2024.04.30.591924.
10
Distinct roles for Mediator Cdk8 module subunits in Drosophila development.
EMBO J. 2007 Feb 21;26(4):1045-54. doi: 10.1038/sj.emboj.7601566. Epub 2007 Feb 8.

引用本文的文献

5
Cdk8 attenuates lipogenesis by inhibiting SREBP-dependent transcription in Drosophila.
Dis Model Mech. 2022 Nov 1;15(11). doi: 10.1242/dmm.049650. Epub 2022 Nov 14.
8
Post-translational Modifications of Serine/Threonine and Histidine Kinases and Their Roles in Signal Transductions in Synechocystis Sp. PCC 6803.
Appl Biochem Biotechnol. 2021 Mar;193(3):687-716. doi: 10.1007/s12010-020-03435-2. Epub 2020 Nov 6.
10
Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
J Chem Theory Comput. 2020 Mar 10;16(3):1882-1895. doi: 10.1021/acs.jctc.9b01153. Epub 2020 Feb 20.

本文引用的文献

1
Involvement of Mediator complex in malignancy.
Biochim Biophys Acta. 2014 Jan;1845(1):66-83. doi: 10.1016/j.bbcan.2013.12.001. Epub 2013 Dec 14.
2
The Mediator complex and transcription regulation.
Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):575-608. doi: 10.3109/10409238.2013.840259. Epub 2013 Oct 3.
3
HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia.
Cell. 2013 Jun 6;153(6):1327-39. doi: 10.1016/j.cell.2013.04.048.
4
Structure-kinetic relationship study of CDK8/CycC specific compounds.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8081-6. doi: 10.1073/pnas.1305378110. Epub 2013 Apr 29.
5
Structural approaches to obtain kinase selectivity.
Trends Pharmacol Sci. 2012 May;33(5):273-8. doi: 10.1016/j.tips.2012.03.005. Epub 2012 Apr 11.
6
The structural basis for control of eukaryotic protein kinases.
Annu Rev Biochem. 2012;81:587-613. doi: 10.1146/annurev-biochem-052410-090317. Epub 2012 Apr 5.
7
Dysregulation of CDK8 and Cyclin C in tumorigenesis.
J Genet Genomics. 2011 Oct 20;38(10):439-52. doi: 10.1016/j.jgg.2011.09.002. Epub 2011 Sep 16.
8
The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder.
J Mol Biol. 2011 Sep 16;412(2):251-66. doi: 10.1016/j.jmb.2011.07.020. Epub 2011 Jul 23.
9
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms.
Mol Cell. 2011 Apr 8;42(1):9-22. doi: 10.1016/j.molcel.2011.03.004.
10
CDK8: a positive regulator of transcription.
Transcription. 2010 Jul-Aug;1(1):4-12. doi: 10.4161/trns.1.1.12373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验