Tonnelier Arnaud
INRIA, 655 avenue de l'Europe, Montbonnot, 38334 , Saint Ismier, France,
Bull Math Biol. 2014 May;76(5):1155-93. doi: 10.1007/s11538-014-9959-1. Epub 2014 Apr 23.
Many biological oscillators have a cyclic structure consisting of negative feedback loops. In this paper, we analyze the impact that the addition of a positive or a negative self-feedback loop has on the oscillatory behavior of the three negative feedback oscillators proposed by Tsai et al. (Science 231:126-129, 2008) where, in contrast with numerous oscillator models, the interactions between elements occur via the modulation of the degradation rates. Through analytical and computational studies we show that an additional self-feedback affects the oscillatory behavior. In the high-cooperativity limit, i.e., for large Hill coefficients, we derive exact analytical conditions for oscillations and show that the relative location between the dissociation constants of the Hill functions and the ratio of kinetic parameters determines the possibility of oscillatory activities. We compute analytically the probability of oscillations for the three models and show that the smallest domain of periodic behavior is obtained for the negative-plus-negative feedback system whereas the additional positive self-feedback loop does not modify significantly the chance to oscillate. We numerically investigate to what extent the properties obtained in the sharp situation applied in the smooth case. Results suggest that a switch-like coupling behavior, a time-scale separation, and a repressilator-type architecture with an even number of elements facilitate the emergence of sustained oscillations in biological systems. An additional positive self-feedback loop produces robustness and adaptability whereas an additional negative self-feedback loop reduces the chance to oscillate.
许多生物振荡器具有由负反馈环组成的循环结构。在本文中,我们分析了添加正或负自反馈环对Tsai等人(《科学》231:126 - 129,2008年)提出的三个负反馈振荡器振荡行为的影响,其中与众多振荡器模型不同,元件之间的相互作用是通过降解速率的调制来发生的。通过分析和计算研究,我们表明额外的自反馈会影响振荡行为。在高协同性极限下,即对于大的希尔系数,我们推导了振荡的精确分析条件,并表明希尔函数解离常数之间的相对位置和动力学参数的比值决定了振荡活动的可能性。我们通过分析计算了这三个模型的振荡概率,并表明负加负反馈系统获得的周期性行为的最小域,而额外的正自反馈环不会显著改变振荡的机会。我们通过数值研究了在尖锐情况下获得的性质在平滑情况下适用的程度。结果表明,类似开关的耦合行为、时间尺度分离以及具有偶数个元件的阻遏物型结构有助于生物系统中持续振荡的出现。额外的正自反馈环产生鲁棒性和适应性,而额外的负自反馈环则降低了振荡的机会。