Strickland Daniel J, Zhang Lei, Huang Yun-Ru, Magagnosc Daniel J, Lee Daeyeon, Gianola Daniel S
Department of Materials Science and Engineering, University of Pennsylvania, USA.
Phys Chem Chem Phys. 2014 Jun 14;16(22):10274-85. doi: 10.1039/c3cp55422h.
We present a new approach for studying the uniaxial compressive behavior of colloidal micropillars as a function of the initial defect population, pillar and colloid dimension, and particle-particle interaction. Pillars composed of nanometer scale particles develop cracks during drying, while pillars composed of micron scale particles dry crack-free. We subject the free-standing pillars, with diameters of 580 μm and 900 μm, to uniaxial compression experiments using a custom-built micromechanical testing apparatus. In pillars with pre-existing cracks, compression activates the macroscopic defects, leading to fracture and stochastic mechanical response as a result of the flaw distribution. Pillars that dry crack-free fail by shear bands that initiate near the punch face. While macroscopically identical, pillar-to-pillar mechanical response varies significantly. We attribute the disparate response to varying structure and environmental conditions. To isolate the effects of environment, we performed controlled experiments over a range of relative humidity levels (<2% to >98% RH). The level of atmospheric humidity affects particle-particle cohesion and friction, resulting in dramatically different mechanical responses. We discuss the results in the context of underlying particle rearrangements leading to mesoscopic shear localization and examine comparisons with atomic disordered systems such as metallic glasses.
我们提出了一种新方法,用于研究胶体微柱的单轴压缩行为,该行为是初始缺陷数量、柱体和胶体尺寸以及颗粒间相互作用的函数。由纳米级颗粒组成的柱体在干燥过程中会产生裂纹,而由微米级颗粒组成的柱体干燥后无裂纹。我们使用定制的微机械测试设备,对直径为580μm和900μm的独立柱体进行单轴压缩实验。在已有裂纹的柱体中,压缩会激活宏观缺陷,由于缺陷分布导致断裂和随机力学响应。干燥后无裂纹的柱体通过冲头面附近产生的剪切带而失效。虽然宏观上相同,但柱体与柱体之间的力学响应差异很大。我们将这种不同的响应归因于结构和环境条件的变化。为了分离环境的影响,我们在一系列相对湿度水平(<2%至>98%RH)下进行了控制实验。大气湿度水平会影响颗粒间的内聚力和摩擦力,从而导致截然不同的力学响应。我们在导致细观剪切局部化的潜在颗粒重排的背景下讨论结果,并研究与诸如金属玻璃等原子无序系统的比较。