Suppr超能文献

前哨淋巴结阳性的乳腺癌患者非前哨淋巴结受累情况的预测

Prediction of non-sentinel lymph node involvement in breast cancer patients with a positive sentinel lymph node.

作者信息

Reynders Anneleen, Brouckaert Olivier, Smeets Ann, Laenen Annouschka, Yoshihara Emi, Persyn Frederik, Floris Giuseppe, Leunen Karin, Amant Frederic, Soens Julie, Van Ongeval Chantal, Moerman Philippe, Vergote Ignace, Christiaens Marie-Rose, Staelens Gracienne, Van Eygen Koen, Vanneste Alain, Van Dam Peter, Colpaert Cecile, Neven Patrick

机构信息

Multidisciplinary Breast Center, KULeuven, University Hospitals, Herestraat 49, Belgium.

Department of Pathology, KULeuven, University Hospitals, Herestraat 49, Belgium.

出版信息

Breast. 2014 Aug;23(4):453-9. doi: 10.1016/j.breast.2014.03.009. Epub 2014 Apr 24.

Abstract

Completion axillary lymph node dissection (cALND) is the golden standard if breast cancer involves the sentinel lymph node (SLN). However, most non-sentinel lymph nodes (NSLN) are not involved, cALND has a considerable complication rate and does not improve outcome. We here present and validate our predictive model for positive NSLNs in the cALND if the SLN is positive. Consecutive early breast cancer patients from one center undergoing cALND for a positive SLN were included. We assessed demographic and clinicopathological variables for NSLN involvement. Uni- and multivariate analysis was performed. A predictive model was built and validated in two external centers. 21.9% of 470 patients had at least one involved NSLN. In univariate analysis, seven variables were significantly correlated with NSLN involvement: tumor size, grade, lymphovascular invasion (LVI), number of positive and negative SLNs, size of SLN metastasis and intraoperative positive SLN. In multivariate analysis, LVI, number of negative SLNs, size of SLN metastasis and intraoperative positive pathological evaluation were independent predictors for NSLN involvement. The calculated risk resulted in an AUC of 0.76. Applied to the external data, the model was accurate and discriminating for one (AUC = 0.75) and less for the other center (AUC = 0.58). A discriminative predictive model was constructed to calculate the risk of NSLN involvement in case of a positive SLN. External validation of our model reveals differences in performance when applied to data from other institutions concluding that such a predictive model requires validation prior to use.

摘要

如果乳腺癌累及前哨淋巴结(SLN),完成腋窝淋巴结清扫术(cALND)是金标准。然而,大多数非前哨淋巴结(NSLN)未受累,cALND有相当高的并发症发生率且不能改善预后。我们在此展示并验证了在前哨淋巴结阳性时cALND中NSLN阳性的预测模型。纳入了来自一个中心的连续早期乳腺癌患者,这些患者因前哨淋巴结阳性接受cALND。我们评估了NSLN受累的人口统计学和临床病理变量。进行了单因素和多因素分析。构建了一个预测模型并在两个外部中心进行验证。470例患者中有21.9%至少有一个NSLN受累。在单因素分析中,七个变量与NSLN受累显著相关:肿瘤大小、分级、淋巴管浸润(LVI)、阳性和阴性前哨淋巴结数量、前哨淋巴结转移大小及术中前哨淋巴结阳性。在多因素分析中,LVI、阴性前哨淋巴结数量、前哨淋巴结转移大小及术中阳性病理评估是NSLN受累的独立预测因素。计算出的风险AUC为0.76。应用于外部数据时,该模型对一个中心准确且有鉴别力(AUC = 0.75),对另一个中心则较差(AUC = 0.58)。构建了一个有鉴别力的预测模型来计算前哨淋巴结阳性时NSLN受累的风险。我们模型的外部验证显示,应用于其他机构的数据时性能存在差异,这表明这种预测模型在使用前需要验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验