Southwest University, Institute of Modern Biopharmaceuticals, School of Life Sciences, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education , Beibei, Chongqing 400715 , China +86 23 68367 108 ; +86 23 68367 108 ;
Expert Opin Ther Targets. 2014 Jun;18(6):691-701. doi: 10.1517/14728222.2014.902937. Epub 2014 Apr 29.
Tuberculosis remains a formidable threat to global public health. Multidrug-resistant tuberculosis presents increasing burden on the control strategy. D-Cycloserine (DCS) is an effective second-line drug against Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis. Though less potent than isoniazid (INH) and streptomycin, DCS is crucial for antibiotic-resistant tuberculosis. One advantage of DCS is that less drug-resistant M. tuberculosis is reported in comparison with first-line antituberculosis drugs such as INH and rifampin.
In this review, we summarise our current knowledge of DCS, and review the drug target and low-level resistance of DCS in M. tuberculosis. We summarise the metabolism of D-alanine (D-Ala) and peptidoglycan biosynthesis in bacteria. We first compared the amino acid similarity of Mycobacterium alanine racemase and D-Ala:D-alanine ligase and quite unexpectedly found that the two enzymes are highly conserved among Mycobacterium.
We summarise the drug targets of DCS and possible mechanisms underlying its low-level resistance for the first time. One significant finding is that ubiquinone and menaquinone metabolism-related genes are novel genes underlying DCS resistance in Escherichia coli and with homologues in M. tuberculosis. Further understanding of DCS targets and basis for its low-level resistance might inspire us to improve the use of DCS or find better drug targets.
结核病仍然是全球公共卫生的一个严峻威胁。耐多药结核病对控制策略构成了越来越大的负担。D-环丝氨酸(DCS)是一种针对结核分枝杆菌(M. tuberculosis)的有效二线药物,结核分枝杆菌是结核病的病原体。尽管其效力不如异烟肼(INH)和链霉素,但 DCS 对抗生素耐药性结核病至关重要。DCS 的一个优势是,与 INH 和利福平等一线抗结核药物相比,报告的耐药结核分枝杆菌较少。
在这篇综述中,我们总结了我们目前对 DCS 的认识,并回顾了 DCS 在结核分枝杆菌中的药物靶点和低水平耐药性。我们总结了 D-丙氨酸(D-Ala)和肽聚糖生物合成的代谢。我们首先比较了分枝杆菌丙氨酸消旋酶和 D-Ala:D-丙氨酸连接酶的氨基酸相似性,令人惊讶的是,这两种酶在分枝杆菌中高度保守。
我们首次总结了 DCS 的药物靶点及其低水平耐药性的可能机制。一个重要的发现是,泛醌和menaquinone 代谢相关基因是大肠杆菌中 DCS 耐药的新基因,在结核分枝杆菌中有同源物。进一步了解 DCS 的靶点及其低水平耐药的基础可能会启发我们改进 DCS 的使用或寻找更好的药物靶点。