Hahn David K, RaghuVeer Krishans, Ortiz J V
Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849-5312, United States.
J Phys Chem A. 2014 May 15;118(19):3514-24. doi: 10.1021/jp502462w. Epub 2014 May 6.
Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.
含磷或硫物种的电子跃迁能和电离能分别采用含时密度泛函理论(TD-DFT)和电子传播子理论(EPT)进行计算。结合各种基组,TD-DFT和EPT的准确性通过气相光谱数据进行评估。在一组37个垂直跃迁和19个绝热跃迁上,使用11种著名的交换相关泛函对TD-DFT进行了测试。对于垂直跃迁,使用MG3S基组进行的TD-CAM-B3LYP计算总体误差最低,与实验的平均绝对偏差为0.22 eV,价态跃迁的平均绝对偏差为0.23 eV,里德堡跃迁的平均绝对偏差为0.21 eV。使用更大的基组aug-pc3,通过杂化泛函可提高价态跃迁的准确性,但只有通过BMK泛函才能提高里德堡跃迁的准确性。对于绝热跃迁,所有与MG3S基组配对的杂化泛函表现良好,B98最佳,与实验的平均绝对偏差为0.09 eV。EPT的测试在37个垂直第一电离能上使用了外层价态格林函数(OVGF)近似和部分三阶(P3)近似。结果发现,当极化函数中使用至少三重ζ质量的基组时,OVGF优于P3。本研究中使用的最大基组aug-pc3,两种方法均获得了最佳平均绝对误差——OVGF为-0.08 eV,P3为0.18 eV。理论水平OVGF/6-31+G(2df,p)特别具有成本效益,平均绝对误差为0.11 eV。