Suppr超能文献

阻塞性睡眠呼吸暂停患者舌部的代谢活性。FDG 正电子发射断层扫描成像的新应用。

Metabolic activity of the tongue in obstructive sleep apnea. A novel application of FDG positron emission tomography imaging.

机构信息

1 Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania; and.

出版信息

Am J Respir Crit Care Med. 2014 Jun 1;189(11):1416-25. doi: 10.1164/rccm.201310-1753OC.

Abstract

RATIONALE

The metabolic activity of the tongue is unknown in patients with obstructive sleep apnea (OSA). Tongue electromyographic (EMG) activity is increased in patients with OSA. This increase in tongue EMG activity is thought to be related to either increased neuromuscular compensation or denervation with subsequent reinnervation of the muscle fibers. Increased glucose uptake in the tongue would support increased neuromuscular compensation, whereas decreased glucose uptake in the tongue would support denervation with subsequent reinnervation of the muscle fibers.

OBJECTIVES

To investigate the metabolic activity of the genioglossus and control upper airway muscles in obese patients with sleep apnea compared with obese control subjects.

METHODS

Obese subjects with and without OSA underwent a standard overnight sleep study to determine an apnea-hypopnea index. Each subject had a positron emission tomography with [(18)F]-2-fluoro-2-deoxy-D-glucose scan in addition to noncontrast computed tomography or magnetic resonance imaging. Glucose uptake was quantified within upper airway tissues with the standardized uptake value.

MEASUREMENTS AND MAIN RESULTS

We recruited 30 obese control subjects (apnea-hypopnea index, 4.7 ± 3.1 events per hour) and 72 obese patients with sleep apnea (apnea-hypopnea index, 43.5 ± 28.0 events per hour). Independent of age, body mass index, sex, and race, patients with OSA had significantly reduced glucose uptake in the genioglossus (P = 0.03) in comparison with obese normal subjects. No differences in standardized uptake value were found in the control muscles (masseter [P = 0.38] and pterygoid [P = 0.70]) and subcutaneous fat deposits (neck [P = 0.44] and submental [P = 0.95]) between patients with OSA and control subjects.

CONCLUSIONS

There was significantly reduced glucose uptake in the genioglossus of patients with sleep apnea in comparison with obese normal subjects with [(18)F]-2-fluoro-2-deoxy-D-glucose positron emission tomography imaging. The reduction in glucose uptake was likely secondary to alterations in tongue muscle fiber-type or secondary to chronic denervation. The reduced glucose uptake argues against the neuromuscular compensation hypothesis explaining the increase in tongue EMG activity in obese patients with OSA.

摘要

背景

阻塞性睡眠呼吸暂停(OSA)患者的舌代谢活动情况尚不清楚。患有 OSA 的患者的舌肌电图(EMG)活动增加。这种舌 EMG 活动的增加被认为与神经肌肉代偿增加或随后的肌肉纤维去神经支配和再支配有关。舌内葡萄糖摄取增加将支持神经肌肉代偿增加,而舌内葡萄糖摄取减少则支持随后的肌肉纤维去神经支配和再支配。

目的

与肥胖对照组相比,研究肥胖伴阻塞性睡眠呼吸暂停(OSA)患者的颏舌肌和控制上气道肌肉的代谢活性。

方法

肥胖伴或不伴 OSA 的患者进行了标准的夜间睡眠研究以确定呼吸暂停低通气指数。每位患者均进行了正电子发射断层扫描(PET),并结合非对比计算机断层扫描或磁共振成像进行[18F]-2-氟-2-脱氧-D-葡萄糖扫描。通过标准化摄取值定量测量上气道组织内的葡萄糖摄取。

测量和主要结果

我们招募了 30 名肥胖对照组(呼吸暂停低通气指数为 4.7 ± 3.1 次/小时)和 72 名肥胖 OSA 患者(呼吸暂停低通气指数为 43.5 ± 28.0 次/小时)。独立于年龄、体重指数、性别和种族,OSA 患者的颏舌肌葡萄糖摄取明显减少(P = 0.03),与肥胖正常组相比。在控制肌肉(咬肌[P = 0.38]和翼内肌[P = 0.70])和皮下脂肪沉积(颈部[P = 0.44]和颏下[P = 0.95])方面,OSA 患者与对照组之间无标准化摄取值差异。

结论

与肥胖正常对照组相比,睡眠呼吸暂停患者的颏舌肌葡萄糖摄取明显减少,通过[18F]-2-氟-2-脱氧-D-葡萄糖正电子发射断层扫描成像。葡萄糖摄取减少可能继发于舌肌纤维类型的改变或继发于慢性去神经支配。葡萄糖摄取减少不支持解释肥胖 OSA 患者舌 EMG 活动增加的神经肌肉代偿假说。

相似文献

1
Metabolic activity of the tongue in obstructive sleep apnea. A novel application of FDG positron emission tomography imaging.
Am J Respir Crit Care Med. 2014 Jun 1;189(11):1416-25. doi: 10.1164/rccm.201310-1753OC.
3
Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea.
Am J Respir Crit Care Med. 2014 Oct 15;190(8):930-7. doi: 10.1164/rccm.201404-0783OC.
4
Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls.
Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1880-7. doi: 10.1164/ajrccm.153.6.8665050.
5
Neurogenic changes in the upper airway of patients with obstructive sleep apnea.
Am J Respir Crit Care Med. 2012 Feb 1;185(3):322-9. doi: 10.1164/rccm.201106-1058OC. Epub 2011 Oct 20.
6
Tongue fat and its relationship to obstructive sleep apnea.
Sleep. 2014 Oct 1;37(10):1639-48. doi: 10.5665/sleep.4072.
7
Asynchrony of lingual muscle recruitment during sleep in obstructive sleep apnea.
J Appl Physiol (1985). 2015 Jun 15;118(12):1516-24. doi: 10.1152/japplphysiol.00937.2014. Epub 2015 Mar 26.
8
Alteration in upper airway dilator muscle coactivation during sleep: comparison of patients with obstructive sleep apnea and healthy subjects.
J Appl Physiol (1985). 2018 Feb 1;124(2):421-429. doi: 10.1152/japplphysiol.01067.2016. Epub 2017 Nov 30.
9
Sweet success should set tongues wagging. A portrait of airway muscle injury in sleep apnea.
Am J Respir Crit Care Med. 2014 Jun 1;189(11):1299-300. doi: 10.1164/rccm.201405-0820ED.
10
Neuropathic changes in the tongue protruder muscles in patients with snoring or obstructive sleep apnea.
Neurophysiol Clin. 2018 Oct;48(5):269-275. doi: 10.1016/j.neucli.2018.05.040. Epub 2018 Jun 15.

引用本文的文献

2
Obstructive Sleep Apnea and Role of the Diaphragm.
Cureus. 2022 Sep 10;14(9):e29004. doi: 10.7759/cureus.29004. eCollection 2022 Sep.
3
Assays of tongue force, timing, and dynamics in rat and mouse models.
Brain Res Bull. 2022 Jul;185:49-55. doi: 10.1016/j.brainresbull.2022.04.008. Epub 2022 Apr 22.
5
Magnetic resonance imaging of obstructive sleep apnea in children.
Pediatr Radiol. 2018 Aug;48(9):1223-1233. doi: 10.1007/s00247-018-4180-2. Epub 2018 Aug 4.
6
Dynamic Upper Airway Imaging during Wakefulness in Obese Subjects with and without Sleep Apnea.
Am J Respir Crit Care Med. 2018 Dec 1;198(11):1435-1443. doi: 10.1164/rccm.201711-2171OC.
7
Understanding Pathophysiological Concepts Leading to Obstructive Apnea.
Obes Surg. 2018 Aug;28(8):2560-2571. doi: 10.1007/s11695-018-3325-6.
10
Digital Morphometrics: A New Upper Airway Phenotyping Paradigm in OSA.
Chest. 2017 Aug;152(2):330-342. doi: 10.1016/j.chest.2017.05.005. Epub 2017 May 17.

本文引用的文献

1
Tongue fat and its relationship to obstructive sleep apnea.
Sleep. 2014 Oct 1;37(10):1639-48. doi: 10.5665/sleep.4072.
2
FDG-PET/CT assessment of differential chemotherapy effects upon skeletal muscle metabolism in patients with melanoma.
Ann Nucl Med. 2014 May;28(4):386-92. doi: 10.1007/s12149-014-0822-0. Epub 2014 Feb 23.
3
Molecular imaging of brown adipose tissue in health and disease.
Eur J Nucl Med Mol Imaging. 2014 Apr;41(4):776-91. doi: 10.1007/s00259-013-2611-8. Epub 2014 Feb 8.
4
Fluorodeoxyglucose uptake in absence of CT abnormality on PET-CT: What is it?
World J Radiol. 2013 Dec 28;5(12):460-7. doi: 10.4329/wjr.v5.i12.460.
5
State-dependent and reflex drives to the upper airway: basic physiology with clinical implications.
J Appl Physiol (1985). 2014 Feb 1;116(3):325-36. doi: 10.1152/japplphysiol.00531.2013. Epub 2013 Aug 22.
6
Functional role of neural injury in obstructive sleep apnea.
Front Neurol. 2012 Jun 15;3:95. doi: 10.3389/fneur.2012.00095. eCollection 2012.
7
Analysis of systemic and airway inflammation in obstructive sleep apnea.
Sleep Breath. 2013 May;17(2):597-604. doi: 10.1007/s11325-012-0726-y. Epub 2012 Jun 7.
8
Neurogenic changes in the upper airway of patients with obstructive sleep apnea.
Am J Respir Crit Care Med. 2012 Feb 1;185(3):322-9. doi: 10.1164/rccm.201106-1058OC. Epub 2011 Oct 20.
9
Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea.
J Appl Physiol (1985). 2011 Dec;111(6):1644-53. doi: 10.1152/japplphysiol.00653.2011. Epub 2011 Sep 1.
10
Tempol ameliorates pharyngeal dilator muscle dysfunction in a rodent model of chronic intermittent hypoxia.
Am J Respir Cell Mol Biol. 2012 Feb;46(2):139-48. doi: 10.1165/rcmb.2011-0084OC. Epub 2011 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验