Quesada-Soriano Indalecio, Barón Carmen, Téllez-Sanz Ramiro, García-Maroto Federico, García-Fuentes Luis
Department of Chemistry and Physics, University of Almería, Research Center for Agrifood Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Ctra de Sacramento s/n, 04120 Almería, Spain.
Department of Chemistry and Physics, University of Almería, Research Center for Agrifood Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Ctra de Sacramento s/n, 04120 Almería, Spain.
Biochim Biophys Acta. 2014 Sep;1844(9):1427-36. doi: 10.1016/j.bbapap.2014.04.017. Epub 2014 May 2.
The glutathione S-transferase from Plasmodium falciparum presents distinct features which are absent from mammalian GST isoenzyme counterparts. Most apparent among these are the ability to tetramerize and the presence of a flexible loop. The loop, situated between the 113-119 residues, has been reported necessary for the tetramerization process. In this article, we report that a residue outside of this loop, Asn112, is a key to the process - to the point where the single Asn112Leu mutation prevents tetramerization altogether. We propose that a structural pattern involving the interaction of the Asn112 and Lys117 residues from two neighboring subunits plays a role in keeping the tetramer structure stable. We also report that, for the tetramerization of the wild-type PfGST to occur, phosphate or pyrophosphate anions must be present. In other words, tetramerization is a phosphate- or pyrophosphate-induced process. Furthermore, the presence of magnesium reinforces this induction. We present experimental evidence for these claims as well as a preliminary calorimetric and kinetic study of the dimeric Asn112Leu PfGST mutant. We also propose a putative binding site for phosphate or pyrophosphate anions through a comparative structural analysis of PfGST and pyrophosphatases from several organisms. Our results highlight the differences between PfGST and the human isoenzymes, which make the parasite enzyme a suitable antimalarial target.
恶性疟原虫的谷胱甘肽S-转移酶具有一些独特的特征,而这些特征在哺乳动物的谷胱甘肽S-转移酶同工酶中并不存在。其中最明显的是能够形成四聚体以及存在一个柔性环。据报道,位于113 - 119个残基之间的这个环对于四聚化过程是必需的。在本文中,我们报道这个环之外的一个残基Asn112是该过程的关键——以至于单个Asn112Leu突变完全阻止了四聚化。我们提出,一种涉及两个相邻亚基的Asn112和Lys117残基相互作用的结构模式在维持四聚体结构稳定方面发挥作用。我们还报道,野生型PfGST的四聚化发生时必须存在磷酸根或焦磷酸根阴离子。换句话说,四聚化是一个由磷酸根或焦磷酸根诱导的过程。此外,镁的存在增强了这种诱导作用。我们为这些说法提供了实验证据,以及对二聚体Asn112Leu PfGST突变体的初步量热和动力学研究。我们还通过对PfGST和几种生物体的焦磷酸酶进行比较结构分析,提出了一个磷酸根或焦磷酸根阴离子的假定结合位点。我们的结果突出了PfGST与人类同工酶之间的差异,这使得这种寄生虫酶成为一个合适的抗疟靶点。