Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Collège de France, chaire de génétique humaine, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France.
Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France.
Rev Neurol (Paris). 2014 May;170(5):355-65. doi: 10.1016/j.neurol.2014.03.008. Epub 2014 Apr 29.
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.
弗里德赖希共济失调(FRDA)是最常见的遗传性常染色体隐性共济失调,但也是一种多系统疾病,常伴有心肌病或糖尿病。它与 FXN 基因第一内含子中 GAA-三核苷酸重复扩展有关,导致 frataxin 水平降低,frataxin 是一种线粒体蛋白,通过控制铁的进入和/或硫化物的产生,对于在生物发生的初始阶段正确组装和保护 Fe-S 簇至关重要。一些数据强调了氧化损伤在 FRDA 中的作用,但对 FXN 突变的病理生理后果的更好理解导致了动物模型的发展。条件性敲除模型再现了人类疾病的重要特征,但缺乏遗传背景,GAA 重复扩展的敲入和转基因模型携带 GAA 重复扩展,但它们仅表现出非常轻微的表型。来自 FRDA 患者的细胞构成了最相关的 frataxin 缺乏细胞模型,因为它们携带有 GAA 重复扩展和调节序列的完整 frataxin 基因座。FRDA 患者来源的诱导多能干细胞(iPSC)衍生神经元表现出成熟延迟和更低的线粒体膜电位,而心肌细胞则表现出进行性线粒体退化,常伴有暗线粒体和正常线粒体的增殖/积累。开发治疗策略的努力可以分为三类:铁螯合剂、抗氧化剂和/或线粒体生物发生的刺激剂,以及 frataxin 水平调节剂。一种有前途的治疗策略是目前研究的热点,即用组蛋白去乙酰化酶抑制剂(HDACi)直接靶向 GAA 重复扩展的异染色质状态,以恢复 frataxin 水平。