Suppr超能文献

Fe@Fe2O3 核壳纳米线通过加速 Fe(III)/Fe(II)循环增强芬顿氧化。

Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles.

机构信息

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.

出版信息

Water Res. 2014 Aug 1;59:145-53. doi: 10.1016/j.watres.2014.04.015. Epub 2014 Apr 18.

Abstract

In this study we demonstrate Fe@Fe2O3 core-shell nanowires can improve Fenton oxidation efficiency by two times with rhodamine B as a model pollutant at pH > 4. Active species trapping experiments revealed that the rhodamine B oxidation enhancement was attributed to molecular oxygen activation induced by Fe@Fe2O3 core-shell nanowires. The molecular oxygen activation process could generate superoxide radicals to assist iron core for the reduction of ferric ions to accelerate the Fe(III)/Fe(II) cycles, which favored the H2O2 decomposition to produce more hydroxyl radicals for the rhodamine B oxidation. The combination of Fe@Fe2O3 core-shell nanowires and ferrous ions (Fe@Fe2O3/Fe(2+)) offered a superior Fenton catalyst to decompose H2O2 for producing OH. We employed benzoic acid as a probe reagent to check the generation of OH and found the OH generation rate of Fe@Fe2O3/Fe(2+) was 2-4 orders of magnitude larger than those of commonly used iron based Fenton catalysts and 38 times that of Fe(2+). The reusability and the stability of Fe@Fe2O3 core-shell nanowires were studied. Total organic carbon and ion chromatography analyses revealed the mineralization of rhodamine B and the releasing of nitrate ions. Gas chromatograph-mass spectrometry was used to investigate the degradation intermediates to propose the possible rhodamine B Fenton oxidation pathway in the presence of Fe@Fe2O3 nanowires. This study not only provides a new Fenton oxidation system for pollutant control, but also widen the application of molecular oxygen activation induced by nanoscale zero valent iron.

摘要

在这项研究中,我们证明了以罗丹明 B 为模型污染物,在 pH>4 的条件下,Fe@Fe2O3 核壳纳米线可以将芬顿氧化效率提高两倍。活性物种捕获实验表明,罗丹明 B 氧化增强归因于 Fe@Fe2O3 核壳纳米线诱导的分子氧活化。分子氧活化过程可以产生超氧自由基,协助铁核还原铁离子,加速 Fe(III)/Fe(II)循环,有利于 H2O2 分解产生更多羟基自由基用于罗丹明 B 的氧化。Fe@Fe2O3 核壳纳米线与亚铁离子(Fe@Fe2O3/Fe(2+))的结合为 H2O2 的分解提供了一种优越的 Fenton 催化剂,用于产生 OH。我们采用苯甲酸作为探针试剂来检查 OH 的生成情况,发现 Fe@Fe2O3/Fe(2+)的 OH 生成速率比常用的铁基 Fenton 催化剂高 2-4 个数量级,比 Fe(2+)高 38 倍。研究了 Fe@Fe2O3 核壳纳米线的可重复使用性和稳定性。总有机碳和离子色谱分析表明,罗丹明 B 的矿化和硝酸盐离子的释放。气相色谱-质谱联用仪用于研究降解中间产物,提出了在 Fe@Fe2O3 纳米线存在下罗丹明 B Fenton 氧化的可能途径。本研究不仅为污染物控制提供了一种新的芬顿氧化体系,而且拓宽了纳米零价铁诱导的分子氧活化的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验