Suppr超能文献

利用新兴化学模式预测不同局部结构-活性关系环境中的化合物。

Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

机构信息

Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität Bonn , Dahlmannstraße 2, D-53113 Bonn, Germany.

出版信息

J Chem Inf Model. 2014 May 27;54(5):1301-10. doi: 10.1021/ci500147b. Epub 2014 May 15.

Abstract

Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics.

摘要

活性化合物可以参与不同的局部结构-活性关系(SAR)环境,并根据其在数据集内的结构和效力关系,引入不同程度的局部 SAR 不连续性。到目前为止,此类 SAR 特征主要通过描述性方法进行分析,特别是基于活性景观建模。然而,不同局部 SAR 环境中的化合物尚未被预测。在此,我们采用新兴的化学模式(ECP)方法,一种化合物分类的机器学习方法,来系统地预测具有不同局部 SAR 特征的化合物。ECP 分析能够准确地将许多化合物分配到不同的局部 SAR 环境中,涵盖了观察到的整个局部 SAR 范围的各种活性类别。使用随机森林和多类支持向量机进行了对照计算,并应用了多种统计性能度量。在所有情况下,ECP 计算的性能都与对照相当或更好。本文提出的方法可用于预测补充局部 SAR 的化合物或优先考虑具有不同 SAR 特征的化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验