Suppr超能文献

相似文献

1
Global selection of saccadic target features by neurons in area v4.
J Neurosci. 2014 May 7;34(19):6700-6. doi: 10.1523/JNEUROSCI.0867-13.2014.
2
Presaccadic discrimination of receptive field stimuli by area V4 neurons.
Vision Res. 2009 Jun;49(10):1227-32. doi: 10.1016/j.visres.2008.03.018. Epub 2008 May 23.
3
Visual representations during saccadic eye movements.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8981-4. doi: 10.1073/pnas.95.15.8981.
4
Changes in the response rate and response variability of area V4 neurons during the preparation of saccadic eye movements.
J Neurophysiol. 2010 Mar;103(3):1171-8. doi: 10.1152/jn.00689.2009. Epub 2009 Dec 16.
5
Mechanisms of Saccadic Suppression in Primate Cortical Area V4.
J Neurosci. 2016 Aug 31;36(35):9227-39. doi: 10.1523/JNEUROSCI.1015-16.2016.
6
A distinct contribution of the frontal eye field to the visual representation of saccadic targets.
J Neurosci. 2014 Mar 5;34(10):3687-98. doi: 10.1523/JNEUROSCI.3824-13.2014.
7
Dynamic sensitivity of area V4 neurons during saccade preparation.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13046-51. doi: 10.1073/pnas.0902412106. Epub 2009 Jul 21.
8
Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements.
J Neurophysiol. 2016 Dec 1;116(6):2882-2891. doi: 10.1152/jn.01140.2015. Epub 2016 Sep 28.
10
Activity in V4 reflects the direction, but not the latency, of saccades during visual search.
J Neurophysiol. 2010 Oct;104(4):2187-93. doi: 10.1152/jn.00898.2009. Epub 2010 Jul 7.

引用本文的文献

1
Coordinated Response Modulations Enable Flexible Use of Visual Information.
bioRxiv. 2024 Jul 15:2024.07.10.602774. doi: 10.1101/2024.07.10.602774.
2
Pre-saccadic Neural Enhancements in Marmoset Area MT.
J Neurosci. 2024 Jan 24;44(4):e2034222023. doi: 10.1523/JNEUROSCI.2034-22.2023.
3
Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4.
Nat Commun. 2021 Mar 31;12(1):2003. doi: 10.1038/s41467-021-22281-2.

本文引用的文献

1
Split of spatial attention as predicted by a systems-level model of visual attention.
Eur J Neurosci. 2011 Jun;33(11):2035-45. doi: 10.1111/j.1460-9568.2011.07718.x.
2
Control of visual cortical signals by prefrontal dopamine.
Nature. 2011 May 15;474(7351):372-5. doi: 10.1038/nature09995.
3
Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons.
J Neurosci. 2009 Dec 2;29(48):15169-77. doi: 10.1523/JNEUROSCI.3710-09.2009.
4
Dynamic sensitivity of area V4 neurons during saccade preparation.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13046-51. doi: 10.1073/pnas.0902412106. Epub 2009 Jul 21.
5
The normalization model of attention.
Neuron. 2009 Jan 29;61(2):168-85. doi: 10.1016/j.neuron.2009.01.002.
6
Presaccadic discrimination of receptive field stimuli by area V4 neurons.
Vision Res. 2009 Jun;49(10):1227-32. doi: 10.1016/j.visres.2008.03.018. Epub 2008 May 23.
7
Fundamental components of attention.
Annu Rev Neurosci. 2007;30:57-78. doi: 10.1146/annurev.neuro.30.051606.094256.
8
V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field.
Neural Netw. 2006 Nov;19(9):1371-82. doi: 10.1016/j.neunet.2006.08.006. Epub 2006 Oct 2.
10
Parallel and serial neural mechanisms for visual search in macaque area V4.
Science. 2005 Apr 22;308(5721):529-34. doi: 10.1126/science.1109676.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验