Suppr超能文献

阅读障碍认知特质基因座的全基因组扫描:字母、数字和颜色的快速命名和快速转换。

Genome scan for cognitive trait loci of dyslexia: Rapid naming and rapid switching of letters, numbers, and colors.

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington.

出版信息

Am J Med Genet B Neuropsychiatr Genet. 2014 Jun;165B(4):345-56. doi: 10.1002/ajmg.b.32237. Epub 2014 May 8.

Abstract

Dyslexia, or specific reading disability, is a common developmental disorder that affects 5-12% of school-aged children. Dyslexia and its component phenotypes, assessed categorically or quantitatively, have complex genetic bases. The ability to rapidly name letters, numbers, and colors from rows presented visually correlates strongly with reading in multiple languages and is a valid predictor of reading and spelling impairment. Performance on measures of rapid naming and switching, RAN and RAS, is stable throughout elementary school years, with slowed performance persisting in adults who still manifest dyslexia. Targeted analyses of dyslexia candidate regions have included RAN measures, but only one other genome-wide linkage study has been reported. As part of a broad effort to identify genetic contributors to dyslexia, we performed combined oligogenic segregation and linkage analyses of measures of RAN and RAS in a family-based cohort ascertained through probands with dyslexia. We obtained strong evidence for linkage of RAN letters to the DYX3 locus on chromosome 2p and RAN colors to chromosome 10q, but were unable to confirm the chromosome 6p21 linkage detected for a composite measure of RAN colors and objects in the previous genome-wide study.

摘要

阅读障碍,又称特异性阅读障碍,是一种常见的发育障碍,影响 5-12%的学龄儿童。阅读障碍及其组成表型,无论是分类评估还是定量评估,都具有复杂的遗传基础。快速从视觉呈现的行中识别字母、数字和颜色的能力与多种语言的阅读能力密切相关,是阅读和拼写障碍的有效预测指标。快速命名和转换(RAN 和 RAS)测量的表现,在整个小学阶段都很稳定,在仍然表现出阅读障碍的成年人中,表现会持续减慢。针对阅读障碍候选区域的靶向分析包括 RAN 测量,但只有一项其他全基因组连锁研究被报道。作为确定阅读障碍遗传贡献的广泛努力的一部分,我们对通过阅读障碍患者的先证者确定的基于家族的队列中的 RAN 和 RAS 测量值进行了联合寡基因分离和连锁分析。我们获得了 RAN 字母与染色体 2p 上的 DYX3 基因座以及 RAN 颜色与染色体 10q 之间的强烈连锁证据,但无法证实之前全基因组研究中检测到的 RAN 颜色和物体综合测量值的染色体 6p21 连锁。

相似文献

1
Genome scan for cognitive trait loci of dyslexia: Rapid naming and rapid switching of letters, numbers, and colors.
Am J Med Genet B Neuropsychiatr Genet. 2014 Jun;165B(4):345-56. doi: 10.1002/ajmg.b.32237. Epub 2014 May 8.
2
Mapping for dyslexia and related cognitive trait loci provides strong evidence for further risk genes on chromosome 6p21.
Am J Med Genet B Neuropsychiatr Genet. 2011 Jan;156B(1):36-43. doi: 10.1002/ajmg.b.31135. Epub 2010 Nov 2.
4
Etiology of reading difficulties and rapid naming: the Colorado Twin Study of Reading Disability.
Behav Genet. 2001 Nov;31(6):625-35. doi: 10.1023/a:1013305730430.
6
Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia.
Transl Psychiatry. 2019 Feb 11;9(1):77. doi: 10.1038/s41398-019-0402-0.
7
Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses.
Hum Genet. 2004 Jul;115(2):128-38. doi: 10.1007/s00439-004-1126-6. Epub 2004 May 11.
9
Genomewide scan for real-word reading subphenotypes of dyslexia: novel chromosome 13 locus and genetic complexity.
Am J Med Genet B Neuropsychiatr Genet. 2006 Jan 5;141B(1):15-27. doi: 10.1002/ajmg.b.30245.

引用本文的文献

1
Targeted analysis of dyslexia-associated regions on chromosomes 6, 12 and 15 in large multigenerational cohorts.
PLoS One. 2025 May 27;20(5):e0324006. doi: 10.1371/journal.pone.0324006. eCollection 2025.
2
A systematic review and meta-analysis of imaging genetics studies of specific reading disorder.
Cogn Neuropsychol. 2021 May;38(3):179-204. doi: 10.1080/02643294.2021.1969900. Epub 2021 Sep 16.
5
Association analysis of dyslexia candidate genes in a Dutch longitudinal sample.
Eur J Hum Genet. 2017 Apr;25(4):452-460. doi: 10.1038/ejhg.2016.194. Epub 2017 Jan 11.
6
Evidence-Based Reading and Writing Assessment for Dyslexia in Adolescents and Young Adults.
Learn Disabil (Pittsbg). 2016;21(1):38-56. doi: 10.18666/LDMJ-2016-V21-I1-6971.
7
Differential Diagnosis of Dysgraphia, Dyslexia, and OWL LD: Behavioral and Neuroimaging Evidence.
Read Writ. 2015 Oct;28(8):1119-1153. doi: 10.1007/s11145-015-9565-0.
8
Differences between Children with Dyslexia Who Are and Are Not Gifted in Verbal Reasoning.
Gift Child Q. 2013 Oct;57(4). doi: 10.1177/0016986213500342.

本文引用的文献

1
Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes.
Genet Epidemiol. 2014 Jan;38(1):1-9. doi: 10.1002/gepi.21776. Epub 2013 Nov 15.
2
GIGI: an approach to effective imputation of dense genotypes on large pedigrees.
Am J Hum Genet. 2013 Apr 4;92(4):504-16. doi: 10.1016/j.ajhg.2013.02.011.
3
The genetics of reading disabilities: from phenotypes to candidate genes.
Front Psychol. 2013 Jan 7;3:601. doi: 10.3389/fpsyg.2012.00601. eCollection 2012.
4
Sequence kernel association test for quantitative traits in family samples.
Genet Epidemiol. 2013 Feb;37(2):196-204. doi: 10.1002/gepi.21703. Epub 2012 Dec 26.
5
RAN and double-deficit theory.
J Learn Disabil. 2013 Mar-Apr;46(2):182-90. doi: 10.1177/0022219411413544. Epub 2011 Jul 19.
6
Mapping for dyslexia and related cognitive trait loci provides strong evidence for further risk genes on chromosome 6p21.
Am J Med Genet B Neuropsychiatr Genet. 2011 Jan;156B(1):36-43. doi: 10.1002/ajmg.b.31135. Epub 2010 Nov 2.
8
Genome scan for spelling deficits: effects of verbal IQ on models of transmission and trait gene localization.
Behav Genet. 2011 Jan;41(1):31-42. doi: 10.1007/s10519-010-9390-9. Epub 2010 Sep 18.
9
Rapid automatized naming (RAN) taps a mechanism that places constraints on the development of early reading fluency.
Psychol Sci. 2009 Aug;20(8):1040-8. doi: 10.1111/j.1467-9280.2009.02405.x. Epub 2009 Jul 8.
10
Naming problems do not reflect a second independent core deficit in dyslexia: double deficits explored.
J Exp Child Psychol. 2009 Jun;103(2):202-21. doi: 10.1016/j.jecp.2008.12.004. Epub 2009 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验