Suppr超能文献

时变时滞和凹凸特性神经网络的多稳定性。

Multistability of neural networks with time-varying delays and concave-convex characteristics.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Feb;23(2):293-305. doi: 10.1109/TNNLS.2011.2179311.

Abstract

In this paper, stability of multiple equilibria of neural networks with time-varying delays and concave-convex characteristics is formulated and studied. Some sufficient conditions are obtained to ensure that an n-neuron neural network with concave-convex characteristics can have a fixed point located in the appointed region. By means of an appropriate partition of the n-dimensional state space, when nonlinear activation functions of an n-neuron neural network are concave or convex in 2k+2m-1 intervals, this neural network can have (2k+2m-1)n equilibrium points. This result can be applied to the multiobjective optimal control and associative memory. In particular, several succinct criteria are given to ascertain multistability of cellular neural networks. These stability conditions are the improvement and extension of the existing stability results in the literature. A numerical example is given to illustrate the theoretical findings via computer simulations.

摘要

本文针对时变时滞和凹凸特性的神经网络提出了多平衡点稳定性问题,并进行了研究。获得了一些充分条件,以确保具有凹凸特性的 n 神经元神经网络存在位于指定区域的平衡点。通过对 n 维状态空间的适当划分,当 n 神经元神经网络的非线性激活函数在 2k+2m-1 个区间内是凹函数或凸函数时,该神经网络可以具有 (2k+2m-1)n 个平衡点。这一结果可应用于多目标最优控制和联想记忆。特别地,给出了几个简洁的准则来确定细胞神经网络的多稳定性。这些稳定性条件是对现有文献中稳定性结果的改进和扩展。通过计算机仿真给出了一个数值示例来说明理论结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验