Curthoys Norman P, Gstraunthaler Gerhard
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and.
Division of Physiology, Innsbruck Medical University, Innsbruck, Austria
Am J Physiol Renal Physiol. 2014 Jul 1;307(1):F1-F11. doi: 10.1152/ajprenal.00067.2014. Epub 2014 May 7.
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
氨生成和糖异生是肾近端曲小管的显著代谢特征,有助于维持全身酸碱平衡。对介导这两条途径协同调节机制的分子分析需要开发一种能在体外重现这些特征的细胞系。通过使猪肾上皮LLC-PK1细胞适应基本无糖培养基,分离出了一种糖异生亚系,称为LLC-PK1-FBPase(+)细胞。LLC-PK1-FBPase(+)细胞在没有己糖和戊糖的情况下生长,表现出增强的氧化代谢和磷酸依赖性谷氨酰胺酶水平升高。这些细胞还大量表达关键的糖异生酶,果糖-1,6-二磷酸酶(FBPase)和磷酸烯醇丙酮酸羧激酶(PEPCK)。因此,LLC-PK1-FBPase(+)细胞改变的表型是多效性的。最重要的是,当转移到模拟明显代谢性酸中毒(9 mM HCO3 (-),pH 6.9)的培养基中时,LLC-PK1-FBPase(+)细胞的NH4(+)离子产生逐渐增加,同时谷氨酰胺酶和胞质PEPCK mRNA水平及蛋白质增加。因此,培养的LLC-PK1-FBPase(+)细胞保留了许多肾近端小管特有的代谢途径和pH反应适应性。介导LLC-PK1-FBPase(+)细胞中谷氨酰胺酶和PEPCK表达增强的分子机制已得到广泛综述。本综述描述了这种独特细胞系的新特性,并总结了最近使用LLC-PK1-FBPase(+)细胞模拟肾近端小管所确定的分子机制。它还确定了可以使用这些细胞进行的未来研究。