IEEE Trans Neural Netw Learn Syst. 2013 Nov;24(11):1814-23. doi: 10.1109/TNNLS.2013.2265604.
This paper deals with the adaptive nonlinear identification and trajectory tracking via dynamic multilayer neural network (NN) with different timescales. Two NN identifiers are proposed for nonlinear systems identification via dynamic NNs with different timescales including both fast and slow phenomenon. The first NN identifier uses the output signals from the actual system for the system identification. In the second NN identifier, all the output signals from nonlinear system are replaced with the state variables of the NNs. The online identification algorithms for both NN identifier parameters are proposed using Lyapunov function and singularly perturbed techniques. With the identified NN models, two indirect adaptive NN controllers for the nonlinear systems containing slow and fast dynamic processes are developed. For both developed adaptive NN controllers, the trajectory errors are analyzed and the stability of the systems is proved. Simulation results show that the controller based on the second identifier has better performance than that of the first identifier.
本文通过具有不同时标(快时标和慢时标)的动态多层神经网络(NN)研究自适应非线性辨识和轨迹跟踪问题。针对包含快、慢动态过程的非线性系统,提出了两种基于不同时标动态 NN 的 NN 辨识器。第一种 NN 辨识器使用实际系统的输出信号进行系统辨识。第二种 NN 辨识器则用 NN 的状态变量来替代非线性系统的所有输出信号。通过 Lyapunov 函数和奇异摄动技术,提出了两种 NN 辨识器参数的在线辨识算法。利用所辨识的 NN 模型,设计了包含慢、快动态过程的非线性系统的两个间接自适应 NN 控制器。对于所提出的两个自适应 NN 控制器,分析了轨迹误差并证明了系统的稳定性。仿真结果表明,基于第二种辨识器的控制器具有更好的性能。