AKT1基因中显著错义突变的计算鉴定

Computational identification of significant missense mutations in AKT1 gene.

作者信息

Shanthi V, Rajasekaran R, Ramanathan K

机构信息

Industrial Biotechnology Division, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India,

出版信息

Cell Biochem Biophys. 2014 Nov;70(2):957-65. doi: 10.1007/s12013-014-0003-8.

Abstract

The AKT1 gene is of supreme importance in cell signaling and human cancer. In the present study, we aim to understand the phenotype variations that were believed to have the highest impact in AKT1 gene by different computational approaches. The analysis was initiated with SIFT tool followed by PolyPhen 2.0, I-Mutant 2.0, and SNPs&GO tools with the aid of 22 nonsynonymous (nsSNPs) retrieved from dbSNP. A total of five AKT1 variants such as E17K, E17S, E319G, L357P, and P388T are found to exert deleterious effects on the protein structure and function. Furthermore, the molecular docking study indicates the lesser binding affinity of inhibitor with the mutant structure than the native type. In addition, root mean square deviation and hydrogen bond details were also analyzed in the 10 ns molecular dynamics simulation study. These computational evidences suggested that E17K, E17S, E319G, L357P, and P388T variants of AKT1 could destabilize the protein networks, thus causing functional deviations of protein to some extent. Moreover, the findings strongly indicate that screening for AKT1, E17K, E17S, E319G, L357P, and P388T variants may be useful for disease molecular diagnosis and also to design the potential AKT inhibitors.

摘要

AKT1基因在细胞信号传导和人类癌症中至关重要。在本研究中,我们旨在通过不同的计算方法了解被认为对AKT1基因影响最大的表型变异。分析首先使用SIFT工具,随后借助从dbSNP检索到的22个非同义(nsSNPs),使用PolyPhen 2.0、I-Mutant 2.0和SNPs&GO工具。总共发现五个AKT1变体,如E17K、E17S、E319G、L357P和P388T,对蛋白质结构和功能产生有害影响。此外,分子对接研究表明抑制剂与突变体结构的结合亲和力低于天然类型。此外,在10纳秒分子动力学模拟研究中还分析了均方根偏差和氢键细节。这些计算证据表明,AKT1的E17K、E17S、E319G、L357P和P388T变体可能会破坏蛋白质网络的稳定性,从而在一定程度上导致蛋白质功能偏差。此外,研究结果强烈表明,筛查AKT1、E17K、E17S、E319G、L357P和P388T变体可能有助于疾病分子诊断,也有助于设计潜在的AKT抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索