Suppr超能文献

基于区间多项式理论的生物模型中的定点分岔分析

Fixed-point bifurcation analysis in biological models using interval polynomials theory.

作者信息

Rigatos Gerasimos G

机构信息

Unit of Industrial Automation, Industrial Systems Institute, Stadiou str, 26504, Rion Patras, Greece,

出版信息

Biol Cybern. 2014 Jun;108(3):365-80. doi: 10.1007/s00422-014-0605-7. Epub 2014 May 10.

Abstract

The paper proposes a systematic method for fixed-point bifurcation analysis in circadian cells and similar biological models using interval polynomials theory. The stages for performing fixed-point bifurcation analysis in such biological systems comprise (i) the computation of fixed points as functions of the bifurcation parameter and (ii) the evaluation of the type of stability for each fixed point through the computation of the eigenvalues of the Jacobian matrix that is associated with the system's nonlinear dynamics model. Stage (ii) requires the computation of the roots of the characteristic polynomial of the Jacobian matrix. This problem is nontrivial since the coefficients of the characteristic polynomial are functions of the bifurcation parameter and the latter varies within intervals. To obtain a clear view about the values of the roots of the characteristic polynomial and about the stability features they provide to the system, the use of interval polynomials theory and particularly of Kharitonov's stability theorem is proposed. In this approach, the study of the stability of a characteristic polynomial with coefficients that vary in intervals is equivalent to the study of the stability of four polynomials with crisp coefficients computed from the boundaries of the aforementioned intervals. The efficiency of the proposed approach for the analysis of fixed-point bifurcations in nonlinear models of biological neurons is tested through numerical and simulation experiments.

摘要

本文提出了一种利用区间多项式理论对生物钟细胞及类似生物模型进行定点分岔分析的系统方法。在此类生物系统中进行定点分岔分析的步骤包括:(i) 将定点计算为分岔参数的函数;(ii) 通过计算与系统非线性动力学模型相关的雅可比矩阵的特征值,评估每个定点的稳定性类型。步骤(ii) 需要计算雅可比矩阵特征多项式的根。由于特征多项式的系数是分岔参数的函数,且分岔参数在区间内变化,所以这个问题并不简单。为了清楚了解特征多项式根的值及其为系统提供的稳定性特征,建议使用区间多项式理论,特别是卡里托诺夫稳定性定理。在这种方法中,研究系数在区间内变化的特征多项式的稳定性,等同于研究由上述区间边界计算出的四个具有清晰系数的多项式的稳定性。通过数值和模拟实验检验了所提方法对生物神经元非线性模型定点分岔分析的有效性。

相似文献

1
Fixed-point bifurcation analysis in biological models using interval polynomials theory.
Biol Cybern. 2014 Jun;108(3):365-80. doi: 10.1007/s00422-014-0605-7. Epub 2014 May 10.
2
Stability analysis of fuzzy parametric uncertain systems.
ISA Trans. 2011 Oct;50(4):538-47. doi: 10.1016/j.isatra.2011.06.002. Epub 2011 Jul 16.
3
Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061921. doi: 10.1103/PhysRevE.77.061921. Epub 2008 Jun 26.
4
Robust stability analysis of fractional order interval polynomials.
ISA Trans. 2009 Apr;48(2):166-72. doi: 10.1016/j.isatra.2009.01.002. Epub 2009 Feb 3.
5
Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture.
Neural Netw. 2009 Dec;22(10):1411-8. doi: 10.1016/j.neunet.2009.03.009. Epub 2009 Mar 26.
7
Control of chaos in nonlinear systems with time-periodic coefficients.
Philos Trans A Math Phys Eng Sci. 2006 Sep 15;364(1846):2417-32. doi: 10.1098/rsta.2006.1832.
8
Adaptive global synchrony of inferior olive neurons.
Bioinspir Biomim. 2009 Sep;4(3):036003. doi: 10.1088/1748-3182/4/3/036003. Epub 2009 Aug 28.
9
Width bifurcation and dynamical phase transitions in open quantum systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052136. doi: 10.1103/PhysRevE.87.052136. Epub 2013 May 28.
10
Backward bifurcation of a plant virus dynamics model with nonlinear continuous and impulsive control.
Math Biosci Eng. 2024 Feb 23;21(3):4056-4084. doi: 10.3934/mbe.2024179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验