Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan.
Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Kainan 642-0017, Japan.
Biochem Pharmacol. 2014 Jul 15;90(2):159-65. doi: 10.1016/j.bcp.2014.04.019. Epub 2014 May 10.
Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans.
肝微粒体黄素单加氧酶(FMO,EC 1.14.13.8)1 和 3 的功能特征在于其在人类、食蟹猴、大鼠和小型猪肝脏中的表达水平和分子催化能力。人类和猴子的肝微粒体 FMO3 以及大鼠和小型猪的 FMO1 和 FMO3 可以用市售的抗人 FMO3 肽抗体或大鼠 FMO1 肽抗体进行免疫化学测定。就苄达明和托扎司特的 FMO 依赖性 N-氧化以及甲巯咪唑和舒林酸硫醚的 S-氧化活性而言,大鼠和小型猪肝微粒体具有高最大速度值(Vmax)和高催化效率(Vmax/Km,米氏常数)与人类或猴子肝微粒体相比。重组表达的大鼠 FMO3 介导的 N-和 S-氧化的表观 Km 值约为大鼠 FMO1 的 10-100 倍,尽管这些酶具有相似的 Vmax 值。重组人 FMO3 和猴 FMO3 的平均催化效率(Vmax/Km,分别为 1.4 和 0.4 min(-1)μM(-1))均高于 FMO1,而大鼠和小型猪 FMO3 的 Vmax/Km 值与 FMO1 相比则较低。小型猪肝微粒体 FMO1 有效地催化 N-和 S-氧化反应;此外,小型猪肝微粒体 FMO1 的浓度高于大鼠、人类和猴子的水平。这些结果表明,肝微粒体 FMO1 可能有助于大鼠和小型猪肝微粒体中相对较高的 FMO 介导的药物 N-和 S-氧化活性,并且人类和猴子肝脏中 FMO1 的低表达可能是实验动物和人类之间肝药物 N-和 S-氧化活性种间差异的决定因素。