Suppr超能文献

剪切粘弹性流体中椭球形颗粒动力学的双稳态和亚双稳态情形

Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid.

作者信息

D'Avino G, Hulsen M A, Greco F, Maffettone P L

机构信息

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.

Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):043006. doi: 10.1103/PhysRevE.89.043006. Epub 2014 Apr 7.

Abstract

The motion of an ellipsoidal particle in a viscoelastic liquid subjected to an unconfined shear flow is addressed by numerical simulations. A complex dynamics is found with different transients and long-time regimes depending on the Deborah number De (De is the product of the viscoelastic liquid intrinsic time times the applied shear rate). Spiraling orbits toward a log-rolling motion around the vorticity are observed for low Deborah numbers, whereas the particle aligns with its major axis near to the flow direction at high Deborah numbers. The transition from vorticity to flow alignment is characterized by a periodic regime with small amplitude oscillations around orientations progressively shifting from vorticity to flow direction by increasing De. A range of Deborah numbers is detected such that the periodic solution coexists with the flow alignment regime (bistability). A further range of De is found where flow alignment is attained differently for particles starting far from or next to the shear plane: in the latter case, very long transients are found; hence an effective bistability (metabistability) is predicted to occur in a large time lapse before reaching the fully aligned state. Finally, the computed Deborah number values for flow alignment favorably compare with available experimental data.

摘要

通过数值模拟研究了椭球形颗粒在无约束剪切流作用下在粘弹性液体中的运动。发现了一种复杂的动力学,其具有不同的瞬态和长时间状态,这取决于德博拉数De(De是粘弹性液体固有时间与施加剪切速率的乘积)。对于低德博拉数,观察到颗粒围绕涡度作螺旋轨道运动,最终形成对数滚动运动;而在高德博拉数下,颗粒的长轴靠近流动方向排列。从涡度排列到流动排列的转变的特征是一个周期性状态,随着De的增加,围绕取向的小振幅振荡逐渐从涡度方向转变为流动方向。检测到一定范围的德博拉数,使得周期解与流动排列状态共存(双稳性)。还发现了另一范围的De,对于起始位置远离或靠近剪切平面的颗粒,达到流动排列的方式不同:在后一种情况下,会出现非常长的瞬态;因此,预计在达到完全排列状态之前的很长一段时间内会出现有效的双稳性(亚稳性)。最后,计算得到的流动排列的德博拉数值与现有的实验数据吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验