Suppr超能文献

能否使用人工神经网络来预测臭氧爆发的起源?

Can artificial neural networks be used to predict the origin of ozone episodes?

机构信息

University Fernando Pessoa, Global Change, Energy, Environment and Bioengineering Center (CIAGEB), Praça 9 de Abril, 349, 4249-004 Porto, Portugal; University of Aveiro, Department of Mechanical Engineering/Centre for Mechanical Technology and Automation, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

University of Aveiro, Department of Mathematics, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; INEB - Instituto de Engenharia Biomédica, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.

出版信息

Sci Total Environ. 2014 Aug 1;488-489:197-207. doi: 10.1016/j.scitotenv.2014.04.077. Epub 2014 May 13.

Abstract

Tropospheric ozone is a secondary pollutant having a negative impact on health and environment. To control and minimize such impact the European Community established regulations to promote a clean air all over Europe. However, when an episode is related with natural mechanisms as Stratosphere-Troposphere Exchanges (STE), the benefits of an action plan to minimize precursor emissions are inefficient. Therefore, this work aims to develop a tool to identify the sources of ozone episodes in order to minimize misclassification and thus avoid the implementation of inappropriate air quality plans. For this purpose, an artificial neural network model - the Multilayer Perceptron - is used as a binary classifier of the source of an ozone episode. Long data series, between 2001 and 2010, considering the ozone precursors, (7)Be activity and meteorological conditions were used. With this model, 2-7% of a mean error was achieved, which is considered as a good generalization. Accuracy measures for imbalanced data are also discussed. The MCC values show a good performance of the model (0.65-0.92). Precision and F1-measure indicate that the model specifies a little better the rare class. Thus, the results demonstrate that such a tool can be used to help authorities in the management of ozone, namely when its thresholds are exceeded due natural causes, as the above mentioned STE. Therefore, the resources used to implement an action plan to minimize ozone precursors could be better managed avoiding the implementation of inappropriate measures.

摘要

对流层臭氧是一种对健康和环境具有负面影响的次生污染物。为了控制和最小化这种影响,欧洲共同体制定了法规,以促进整个欧洲的清洁空气。然而,当涉及到与自然机制如平流层-对流层交换(STE)相关的事件时,最小化前体排放的行动计划的好处是低效的。因此,这项工作旨在开发一种工具来识别臭氧事件的来源,以最小化错误分类,从而避免实施不适当的空气质量计划。为此,使用了人工神经网络模型-多层感知器-作为臭氧事件来源的二进制分类器。使用了长数据序列,从 2001 年到 2010 年,考虑了臭氧前体、(7)Be 活性和气象条件。使用这个模型,实现了 2-7%的平均误差,这被认为是一个很好的泛化。还讨论了不平衡数据的准确性度量。MCC 值显示了模型的良好性能(0.65-0.92)。精度和 F1 度量表明,该模型指定了罕见类别的能力略强。因此,结果表明,这种工具可以帮助当局管理臭氧,特别是当由于自然原因(如上述 STE)导致臭氧超过阈值时。因此,可以更好地管理用于最小化臭氧前体的资源,避免实施不适当的措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验