Suppr超能文献

一种将宏观纳米颗粒-配体单层膜功能化并自组装到无模板基底上的技术。

A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.

作者信息

Fontana Jake, Spillmann Christopher, Naciri Jawad, Ratna Banahalli R

机构信息

Naval Research Laboratory;

Naval Research Laboratory.

出版信息

J Vis Exp. 2014 May 9(87):51282. doi: 10.3791/51282.

Abstract

This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.

摘要

本方案描述了一种自组装技术,用于创建由配体包覆的纳米颗粒组成的宏观单层膜。这种简单、稳健且可扩展的技术能在互溶的水/有机溶剂混合物中用硫醇配体有效地对金属纳米颗粒进行功能化,从而使硫醇基团能快速接枝到金纳米颗粒表面。纳米颗粒上的疏水配体随后迅速使纳米颗粒与水基悬浮液发生相分离,并将它们限制在气液界面。这促使配体封端的纳米颗粒在气液界面形成单层区域。使用与水互溶的有机溶剂很重要,因为它能使纳米颗粒从界面转移到无模板的基底上。这种流动由表面张力梯度介导,从而形成宏观的、高密度的单层纳米颗粒 - 配体膜。这种自组装技术可以推广到包括使用不同组成、尺寸和形状的颗粒,并且可能会产生一种有效的组装方法,以生产低成本、宏观、高密度的单层纳米颗粒膜用于广泛的应用。

相似文献

3
The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles.
ACS Nano. 2021 Mar 23;15(3):4534-4545. doi: 10.1021/acsnano.0c08623. Epub 2021 Feb 23.
4
Titration of gold nanoparticles in phase extraction.
Analyst. 2015 Dec 7;140(23):8023-32. doi: 10.1039/c5an01915j. Epub 2015 Nov 2.
5
A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers.
Langmuir. 2015 Aug 25;31(33):9205-13. doi: 10.1021/acs.langmuir.5b01838. Epub 2015 Aug 14.
7
Hydrophilic gold nanoparticles adaptable for hydrophobic solvents.
Langmuir. 2012 Apr 3;28(13):5503-7. doi: 10.1021/la300299x. Epub 2012 Mar 23.
8
α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
Protein Pept Lett. 2018;25(1):56-63. doi: 10.2174/0929866525666171214113324.
9
Ordered nanopattern arrangement of gold nanoparticles on β-sheet peptide templates through nucleobase pairing.
ACS Nano. 2011 Aug 23;5(8):6174-83. doi: 10.1021/nn200711x. Epub 2011 Jul 19.
10
Close-packed monolayers of charged Janus-type nanoparticles at the air-water interface.
J Colloid Interface Sci. 2012 Jun 1;375(1):180-6. doi: 10.1016/j.jcis.2012.02.057. Epub 2012 Mar 7.

本文引用的文献

2
Free-standing plasmonic-nanorod superlattice sheets.
ACS Nano. 2012 Jan 24;6(1):925-34. doi: 10.1021/nn204498j. Epub 2011 Dec 28.
3
Optical spectroscopy of conductive junctions in plasmonic cavities.
Nano Lett. 2010 Aug 11;10(8):3090-5. doi: 10.1021/nl1017173.
4
Yellow-light negative-index metamaterials.
Opt Lett. 2009 Nov 15;34(22):3478-80. doi: 10.1364/OL.34.003478.
5
6
An optical cloak made of dielectrics.
Nat Mater. 2009 Jul;8(7):568-71. doi: 10.1038/nmat2461. Epub 2009 Apr 29.
7
Marangoni flow of Ag nanoparticles from the fluid-fluid interface.
J Phys Chem A. 2008 Oct 2;112(39):9318-23. doi: 10.1021/jp802273j. Epub 2008 Sep 10.
8
Mechanistic aspects of ligand exchange in Au nanoparticles.
Phys Chem Chem Phys. 2008 Sep 1;10(33):5029-41. doi: 10.1039/b805551c. Epub 2008 Jul 1.
9
Three-dimensional optical metamaterial with a negative refractive index.
Nature. 2008 Sep 18;455(7211):376-9. doi: 10.1038/nature07247. Epub 2008 Aug 11.
10
Simultaneous measurements of electronic conduction and Raman response in molecular junctions.
Nano Lett. 2008 Mar;8(3):919-24. doi: 10.1021/nl073346h. Epub 2008 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验